Predicting Non-Small-Cell Lung Cancer Survival after Curative Surgery via Deep Learning of Diffusion MRI

医学 肺癌 Softmax函数 磁共振弥散成像 核医学 磁共振成像 放射科 内科学 机器学习 深度学习 计算机科学
作者
Jung Won Moon,Ehwa Yang,Jae‐Hun Kim,O Jung Kwon,Minsu Park,Chin A Yi
出处
期刊:Diagnostics [MDPI AG]
卷期号:13 (15): 2555-2555 被引量:5
标识
DOI:10.3390/diagnostics13152555
摘要

Background: the objective of this study is to evaluate the predictive power of the survival model using deep learning of diffusion-weighted images (DWI) in patients with non-small-cell lung cancer (NSCLC). Methods: DWI at b-values of 0, 100, and 700 sec/mm2 (DWI0, DWI100, DWI700) were preoperatively obtained for 100 NSCLC patients who underwent curative surgery (57 men, 43 women; mean age, 62 years). The ADC0-100 (perfusion-sensitive ADC), ADC100-700 (perfusion-insensitive ADC), ADC0-100-700, and demographic features were collected as input data and 5-year survival was collected as output data. Our survival model adopted transfer learning from a pre-trained VGG-16 network, whereby the softmax layer was replaced with the binary classification layer for the prediction of 5-year survival. Three channels of input data were selected in combination out of DWIs and ADC images and their accuracies and AUCs were compared for the best performance during 10-fold cross validation. Results: 66 patients survived, and 34 patients died. The predictive performance was the best in the following combination: DWI0-ADC0-100-ADC0-100-700 (accuracy: 92%; AUC: 0.904). This was followed by DWI0-DWI700-ADC0-100-700, DWI0-DWI100-DWI700, and DWI0-DWI0-DWI0 (accuracy: 91%, 81%, 76%; AUC: 0.889, 0.763, 0.711, respectively). Survival prediction models trained with ADC performed significantly better than the one trained with DWI only (p-values < 0.05). The survival prediction was improved when demographic features were added to the model with only DWIs, but the benefit of clinical information was not prominent when added to the best performing model using both DWI and ADC. Conclusions: Deep learning may play a role in the survival prediction of lung cancer. The performance of learning can be enhanced by inputting precedented, proven functional parameters of the ADC instead of the original data of DWIs only.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小青椒应助朴实的小懒虫采纳,获得20
1秒前
1秒前
xs发布了新的文献求助10
2秒前
phj完成签到,获得积分10
2秒前
2秒前
4秒前
Andy1201完成签到,获得积分10
4秒前
王秀秀完成签到,获得积分10
5秒前
浮游应助老迟到的寒香采纳,获得10
6秒前
傲娇如天发布了新的文献求助10
7秒前
稳重夏云发布了新的文献求助10
7秒前
人参和醋不相逢完成签到,获得积分10
7秒前
传奇3应助whwh采纳,获得10
7秒前
8秒前
10秒前
10秒前
布丁完成签到,获得积分20
10秒前
Estella完成签到,获得积分10
12秒前
yy完成签到 ,获得积分10
12秒前
在水一方应助布丁采纳,获得10
12秒前
13秒前
果汁发布了新的文献求助10
14秒前
完美世界应助li采纳,获得10
16秒前
ZXRGXY发布了新的文献求助10
16秒前
Philip发布了新的文献求助10
17秒前
Ava应助人参和醋不相逢采纳,获得10
18秒前
18秒前
慕青应助shaonianliang采纳,获得10
18秒前
汉堡包应助金金金采纳,获得10
18秒前
guoweismmu完成签到,获得积分10
19秒前
20秒前
Estella发布了新的文献求助10
20秒前
英姑应助Philip采纳,获得10
21秒前
山止川行完成签到,获得积分10
21秒前
23秒前
23秒前
24秒前
25秒前
Sunshine应助辛勤的思卉采纳,获得10
25秒前
即将高产sci完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298335
求助须知:如何正确求助?哪些是违规求助? 4446911
关于积分的说明 13840905
捐赠科研通 4332290
什么是DOI,文献DOI怎么找? 2378093
邀请新用户注册赠送积分活动 1373358
关于科研通互助平台的介绍 1338939