已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep recommendation system based on knowledge graph and review text

计算机科学 情报检索 推荐系统 图形 编码器 特征(语言学) 特征向量 潜在语义分析 人工智能 自然语言处理 理论计算机科学 语言学 哲学 操作系统
作者
Ning Liu,Zhao Jian-hua
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:45 (5): 7661-7673
标识
DOI:10.3233/jifs-230584
摘要

With the explosive increase of information, recommendation system is applied in a variety of areas. However, the performance of recommendation system is limited due to issues such as data sparsity, cold starts and poor semantic understanding. In order to make full use of external information to assist recommendation, deeply mine the semantic information of review text and further improve the performance of recommendation system, a deep recommendation system based on knowledge graph and review text (Drs-kgrt) is proposed in this paper. In Drs-kgrt, knowledge graph, review text and the social records between users are used as auxiliary information to improve recommendation performance. Firstly, the review text is divided into user review text and item review text. BERT (Bidirectional Encoder Representation from Transformers) is used to accurately understand semantic information in user review text and the social records between users. The trust relationship between users and user preferences are fully mined to form user feature vectors. Secondly, BERT and knowledge graph entity recognition link technology are combined to extract item attribute feature entities and their associated entities. The fine-grained features of the items are analyzed to form item feature vectors. Thirdly, based on the scoring matrix, latent vectors of users and items are obtained by matrix decomposition. The deep features of users and items are generated based on user feature vectors, item feature vectors, latent vectors of users and items, the deep recommendation system is established to predict user scores for items. Finally, experiments are conducted on the Douban dataset and Amazon Movie Review dataset, the results show that the proposed algorithm can achieve better performance compared with other benchmark recommendation algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有趣的银完成签到,获得积分10
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
renzhenuexi应助科研通管家采纳,获得10
1秒前
竹筏过海应助科研通管家采纳,获得100
1秒前
竹筏过海应助科研通管家采纳,获得100
1秒前
1秒前
敬业乐群发布了新的文献求助10
1秒前
lyt完成签到,获得积分10
2秒前
清秀芝麻完成签到 ,获得积分10
4秒前
EternalStrider完成签到,获得积分10
4秒前
ding应助ccm采纳,获得10
5秒前
HK完成签到 ,获得积分10
8秒前
holmes完成签到,获得积分10
14秒前
zzzz发布了新的文献求助10
15秒前
Criminology34应助ccm采纳,获得10
16秒前
18秒前
19秒前
核桃发布了新的文献求助20
21秒前
摘要发布了新的文献求助10
21秒前
22秒前
oatmealR完成签到 ,获得积分10
24秒前
25秒前
朝槿完成签到 ,获得积分10
26秒前
不吃了完成签到 ,获得积分10
27秒前
一个可爱的人完成签到 ,获得积分10
27秒前
Criminology34应助ccm采纳,获得10
29秒前
韩妙发布了新的文献求助10
30秒前
Milton_z完成签到 ,获得积分0
35秒前
Guke发布了新的文献求助10
37秒前
40秒前
40秒前
英姑应助韩妙采纳,获得10
41秒前
慎二完成签到 ,获得积分10
42秒前
浮游应助和谐的芷文采纳,获得10
42秒前
花HUA发布了新的文献求助10
43秒前
43秒前
sssss发布了新的文献求助10
45秒前
Guke完成签到,获得积分10
48秒前
shentx完成签到,获得积分10
49秒前
任性的冷荷完成签到,获得积分10
51秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209739
求助须知:如何正确求助?哪些是违规求助? 4386912
关于积分的说明 13661937
捐赠科研通 4246363
什么是DOI,文献DOI怎么找? 2329699
邀请新用户注册赠送积分活动 1327477
关于科研通互助平台的介绍 1279863