DNA超螺旋
生物
蛋白质丝
鞭毛
菌毛
生物物理学
同源(生物学)
生物化学
遗传学
DNA
细菌
大肠杆菌
DNA复制
氨基酸
基因
作者
Mark A B Kreutzberger,Ravi R. Sonani,Junfeng Liu,Sharanya Chatterjee,Fengbin Wang,Amanda L. Sebastian,Priyanka Biswas,Cheryl Ewing,Weili Zheng,Frédéric Poly,Gad Frankel,B.F. Luisi,Chris R. Calladine,Mart Krupovic,Birgit E Scharf,Edward H. Egelman
出处
期刊:Cell
[Elsevier]
日期:2022-09-01
卷期号:185 (19): 3487-3500.e14
被引量:2
标识
DOI:10.1016/j.cell.2022.08.009
摘要
The supercoiling of bacterial and archaeal flagellar filaments is required for motility. Archaeal flagellar filaments have no homology to their bacterial counterparts and are instead homologs of bacterial type IV pili. How these prokaryotic flagellar filaments, each composed of thousands of copies of identical subunits, can form stable supercoils under torsional stress is a fascinating puzzle for which structural insights have been elusive. Advances in cryoelectron microscopy (cryo-EM) make it now possible to directly visualize the basis for supercoiling, and here, we show the atomic structures of supercoiled bacterial and archaeal flagellar filaments. For the bacterial flagellar filament, we identify 11 distinct protofilament conformations with three broad classes of inter-protomer interface. For the archaeal flagellar filament, 10 protofilaments form a supercoil geometry supported by 10 distinct conformations, with one inter-protomer discontinuity creating a seam inside of the curve. Our results suggest that convergent evolution has yielded stable superhelical geometries that enable microbial locomotion.
科研通智能强力驱动
Strongly Powered by AbleSci AI