Explainable active learning in investigating structure–stability of SmFe12-α-βXαYβ structures X, Y {Mo, Zn, Co, Cu, Ti, Al, Ga}

材料科学 结晶学 工程物理 冶金 化学 物理
作者
Duong‐Nguyen Nguyen,Hiori Kino,Takashi Miyake,Dam Hieu
出处
期刊:Mrs Bulletin [Springer Nature]
卷期号:48 (1): 31-44 被引量:8
标识
DOI:10.1557/s43577-022-00372-9
摘要

Abstract In this article, we propose a query-and-learn active learning approach combined with first-principles calculations to rapidly search for potentially stable crystal structure via elemental substitution, to clarify their stabilization mechanism, and integrate this approach to SmFe $$_{12}$$ 12 -based compounds with ThMn $$_{12}$$ 12 structure, which exhibits prominent magnetic properties. The proposed method aims to (1) accurately estimate formation energies with limited first-principles calculation data, (2) visually monitor the progress of the structure search process, (3) extract correlations between structures and formation energies, and (4) recommend the most beneficial candidates of SmFe $$_{12}$$ 12 -substituted structures for the subsequent first-principles calculations. The structures of SmFe $$_{12-\upalpha -\upbeta }\mathsf {X}_{\upalpha }\mathsf {Y}_{\upbeta }$$ 12 - α - β X α Y β before optimization are prepared by substituting $$\mathsf {X}, \mathsf {Y}$$ X , Y elements—Mo, Zn, Co, Cu, Ti, Al, Ga—in the region of $$\upalpha +\upbeta <4$$ α + β < 4 into iron sites of the original SmFe $$_{12}$$ 12 structures. Using the optimized structures and formation energies obtained from the first-principles calculations after each active learning cycle, we construct an embedded two-dimensional space to rationally visualize the set of all the calculated and not-yet-calculated structures for monitoring the progress of the search. Our machine learning model with an embedding representation attained a prediction error for the formation energy of $$1.25\times 10^{-2}$$ 1.25 × 10 - 2 (eV/atom) and required only one-sixth of the training data compared to other learning methods. Moreover, the time required to recall most potentially stable structures was nearly four times faster than the random search. The formation energy landscape visualized using the embedding representation revealed that the substitutions of Al and Ga have the highest potential to stabilize the SmFe $$_{12}$$ 12 structure. In particular, SmFe $$_{9}$$ 9 [Al/Ga] $$_{2}$$ 2 Ti showed the highest stability among the investigated structures. Finally, by quantitatively measuring the change in the structures before and after optimization using OFM descriptors, the correlations between the coordination number of substitution sites and the resulting formation energy are revealed. The negative-formation-energy-family SmFe $$_{12-\upalpha -\upbeta }$$ 12 - α - β [Al/Ga] $$_{\upalpha }\mathsf {Y}_{\upbeta }$$ α Y β structures show a common trend of increasing coordination number at substituted sites, whereas structures with positive formation energy show a corresponding decreasing trend. Impact statement Seeking the next generation of high-performance magnets is a crucial demand for replacing the widely accepted Nd-Fe-B magnets developed in the middle 80s. The iron-rich compounds with the original tetragonal ThMn 12 structure appear as the most potential candidates except for the hard synthesizing it in nature due to its high energy of formation. Stabilization for this material system is expected by substituting new elements, but the vast number of possible structures makes the exploration difficult even for theoretical calculations. This article proposes an integration of first-principles calculations and explainable active learning to efficiently explore the crystal structure space of this material system. In particular, the explored crystal structure space can be rationally visualized, on which the relationship between substitution elements, substitution sites, and crystal structure stabilization can be intuitively interpreted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助研友_Z6W1b8采纳,获得10
2秒前
2秒前
pan发布了新的文献求助20
4秒前
傻傻发布了新的文献求助10
4秒前
5秒前
6秒前
不安的橘子完成签到,获得积分10
8秒前
南山鹤发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
TTOM完成签到,获得积分10
11秒前
NexusExplorer应助殷勤的学姐采纳,获得10
12秒前
南山鹤完成签到,获得积分10
12秒前
13秒前
NE完成签到,获得积分10
13秒前
13秒前
Lsy发布了新的文献求助10
14秒前
诸葛御风应助Bonnienuit采纳,获得30
16秒前
小恐龙完成签到,获得积分10
17秒前
楚楚爸完成签到,获得积分10
17秒前
程平发布了新的文献求助10
18秒前
科目三应助杨冰采纳,获得10
18秒前
2Cd完成签到,获得积分10
23秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
25秒前
AAA完成签到,获得积分10
26秒前
程平完成签到,获得积分10
27秒前
科研通AI5应助傻傻采纳,获得10
27秒前
29秒前
个木发布了新的文献求助10
30秒前
大恩区完成签到,获得积分10
30秒前
30秒前
修辞完成签到 ,获得积分10
32秒前
科研通AI2S应助个木采纳,获得10
33秒前
36秒前
个木完成签到,获得积分20
38秒前
123完成签到,获得积分10
40秒前
万能图书馆应助胖Q采纳,获得10
40秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864604
求助须知:如何正确求助?哪些是违规求助? 3406976
关于积分的说明 10652259
捐赠科研通 3130961
什么是DOI,文献DOI怎么找? 1726714
邀请新用户注册赠送积分活动 831961
科研通“疑难数据库(出版商)”最低求助积分说明 780064