双功能
电催化剂
催化作用
过电位
纳米颗粒
材料科学
阴极
化学工程
析氧
电化学
纳米技术
化学
电极
有机化学
物理化学
工程类
作者
Xiaohua Deng,Xianrui Gu,Yingjie Deng,Jiang Zhu,Wenxuan Chen,Dai Dang,Wei Lin,Bin Chi
出处
期刊:Nanoscale
[Royal Society of Chemistry]
日期:2022-01-01
卷期号:14 (36): 13192-13203
被引量:16
摘要
The high overpotential of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) leading to slow air cathode kinetics is still a major challenge for zinc-air batteries (ZABs), hindering the commercialization of ZABs. With the advantages of cost-effectiveness and feasibility of synthesis at room temperature, zeolite imidazole frameworks (ZIFs) are regarded as advanced precursors. But a majority of ZIF-derived catalysts show only one catalytic activity, which limits their performance in ZABs as well as the cycling stability. In addition, molybdenum carbide (MoC) is recognized as an excellent candidate for renewable energy conversion due to its good chemical resistance and thermal stability. Herein, we report a ZIF-67-derived Co/MoC-NC multiphase doped carbon bifunctional ORR/OER catalyst with multiple active sites for the cathode of ZABs. The synergistic catalysis of Co nanoparticles and MoC nanoparticles in Co/MoC-NC which are embedded in a thin layer of N-doped graphitic carbon and immobilized on N-doped graphitic carbon, respectively, demonstrates superior ORR catalytic performance and durability both under alkaline and acidic conditions (E1/2 = 0.87 V in 1.0 M KOH and E1/2 = 0.76 V in 0.5 M H2SO4). Simultaneously, Co/MoC-NC also exhibits favorable OER performance (10 mA cm-2, η = 320 mV) in 1 M KOH. Furthermore, a remarkable peak-power density of 215.36 mW cm-2 and great cycling stability could be achieved while applying Co/MoC-NC in the cathode of ZABs (over 300 h). This work will provide a viable design concept for designing and synthesizing multifunctional catalysts to construct rechargeable ZABs.
科研通智能强力驱动
Strongly Powered by AbleSci AI