Fundus Image-Label Pairs Synthesis and Retinopathy Screening via GANs With Class-Imbalanced Semi-Supervised Learning

计算机科学 人工智能 眼底(子宫) 计算机视觉 图像(数学) 班级(哲学) 模式识别(心理学) 视网膜病变 验光服务 内分泌学 糖尿病 医学 眼科
作者
Yingpeng Xie,Qiwei Wan,Hai Xie,Yanwu Xu,Tianfu Wang,Shuqiang Wang,Baiying Lei
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (9): 2714-2725 被引量:9
标识
DOI:10.1109/tmi.2023.3263216
摘要

Retinopathy is the primary cause of irreversible yet preventable blindness. Numerous deep-learning algorithms have been developed for automatic retinal fundus image analysis. However, existing methods are usually data-driven, which rarely consider the costs associated with fundus image collection and annotation, along with the class-imbalanced distribution that arises from the relative scarcity of disease-positive individuals in the population. Semi-supervised learning on class-imbalanced data, despite a realistic problem, has been relatively little studied. To fill the existing research gap, we explore generative adversarial networks (GANs) as a potential answer to that problem. Specifically, we present a novel framework, named CISSL-GANs, for class-imbalanced semi-supervised learning (CISSL) by leveraging a dynamic class-rebalancing (DCR) sampler, which exploits the property that the classifier trained on class-imbalanced data produces high-precision pseudo-labels on minority classes to leverage the bias inherent in pseudo-labels. Also, given the well-known difficulty of training GANs on complex data, we investigate three practical techniques to improve the training dynamics without altering the global equilibrium. Experimental results demonstrate that our CISSL-GANs are capable of simultaneously improving fundus image class-conditional generation and classification performance under a typical label insufficient and imbalanced scenario. Our code is available at: https://github.com/Xyporz/CISSL-GANs .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助kelexh采纳,获得10
3秒前
若影发布了新的文献求助10
4秒前
科研通AI5应助龙弟弟采纳,获得10
6秒前
jiang完成签到 ,获得积分10
7秒前
辛谷方松永旭完成签到 ,获得积分10
9秒前
13秒前
贪玩的半仙完成签到,获得积分10
15秒前
15秒前
16秒前
hr完成签到 ,获得积分10
17秒前
阡陌完成签到,获得积分10
18秒前
19秒前
20秒前
20秒前
kelexh发布了新的文献求助10
20秒前
Ss关注了科研通微信公众号
22秒前
22秒前
狂野的若雁完成签到,获得积分20
23秒前
pluto应助科研通管家采纳,获得20
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
orixero应助科研通管家采纳,获得10
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
情怀应助科研通管家采纳,获得10
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
我是老大应助科研通管家采纳,获得10
23秒前
niu应助科研通管家采纳,获得10
23秒前
领导范儿应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
传奇3应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
kingwill发布了新的文献求助30
24秒前
闵其其完成签到 ,获得积分10
24秒前
高高兴兴完成签到,获得积分10
24秒前
cai发布了新的文献求助10
25秒前
sdbz001完成签到,获得积分10
26秒前
龙弟弟发布了新的文献求助10
28秒前
Ss发布了新的文献求助10
30秒前
Ayo发布了新的文献求助10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777977
求助须知:如何正确求助?哪些是违规求助? 3323559
关于积分的说明 10214983
捐赠科研通 3038761
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798276
科研通“疑难数据库(出版商)”最低求助积分说明 758315