An adaptive parallel evolutionary algorithm for solving the uncapacitated facility location problem

数学优化 计算机科学 水准点(测量) 一元运算 进化算法 操作员(生物学) 算法 启发式 元启发式 集合(抽象数据类型) 局部搜索(优化) 数学 组合数学 地理 程序设计语言 化学 抑制因子 基因 转录因子 生物化学 大地测量学
作者
Emrullah Sonuç,Ender Özcan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:224: 119956-119956 被引量:2
标识
DOI:10.1016/j.eswa.2023.119956
摘要

Metaheuristics, providing high level guidelines for heuristic optimisation, have successfully been applied to many complex problems over the past decades. However, their performances often vary depending on the choice of the initial settings for their parameters and operators along with the characteristics of the given problem instance handled. Hence, there is a growing interest into designing adaptive search methods that automate the selection of efficient operators and setting of their parameters during the search process. In this study, an adaptive binary parallel evolutionary algorithm, referred to as ABPEA, is introduced for solving the uncapacitated facility location problem which is proven to be an NP-hard optimisation problem. The approach uses a unary and two other binary operators. A reinforcement learning mechanism is used for assigning credits to operators considering their recent impact on generating improved solutions to the problem instance in hand. An operator is selected adaptively with a greedy policy for perturbing a solution. The performance of the proposed approach is evaluated on a set of well-known benchmark instances using ORLib and M*, and its scaling capacity by running it with different starting points on an increasing number of threads. Parameters are adjusted to derive the best configuration of three different rewarding schemes, which are instant, average and extreme. A performance comparison to the other state-of-the-art algorithms illustrates the superiority of ABPEA. Moreover, ABPEA provides up to a factor of 3.9 times acceleration when compared to the sequential algorithm based on a single-operator.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助悦耳的惜海采纳,获得10
2秒前
8秒前
Cynthia完成签到 ,获得积分10
10秒前
Ian发布了新的文献求助10
12秒前
悦耳的惜海完成签到,获得积分10
13秒前
中科路2020完成签到,获得积分10
13秒前
田様应助XM采纳,获得10
15秒前
cdercder应助科研通管家采纳,获得10
16秒前
Thien应助科研通管家采纳,获得20
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
Thien应助科研通管家采纳,获得10
16秒前
16秒前
遠山完成签到,获得积分10
17秒前
18秒前
zeroayanami0完成签到,获得积分10
22秒前
janice116688完成签到,获得积分10
22秒前
qing完成签到,获得积分10
22秒前
可靠不凡完成签到,获得积分10
24秒前
24秒前
阿敬发布了新的文献求助80
27秒前
可靠不凡发布了新的文献求助10
28秒前
清脆怜寒完成签到,获得积分10
29秒前
慕青应助rxgg采纳,获得10
32秒前
32秒前
32秒前
sgt发布了新的文献求助10
37秒前
qj完成签到 ,获得积分10
41秒前
42秒前
45秒前
47秒前
inn完成签到,获得积分10
48秒前
华华发布了新的文献求助10
49秒前
51秒前
小洲冲冲冲完成签到 ,获得积分10
51秒前
和道一文字完成签到,获得积分10
52秒前
52秒前
chen完成签到,获得积分10
52秒前
现实的面包完成签到,获得积分10
54秒前
55秒前
隐形曼青应助Vlory采纳,获得10
55秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799070
求助须知:如何正确求助?哪些是违规求助? 3344776
关于积分的说明 10321432
捐赠科研通 3061226
什么是DOI,文献DOI怎么找? 1680094
邀请新用户注册赠送积分活动 806899
科研通“疑难数据库(出版商)”最低求助积分说明 763445