分泌物
枯草芽孢杆菌
丝绸
细胞生物学
丝素
分泌蛋白
化学
易位
纳米技术
膜
材料科学
膜蛋白
细菌
生物
生物化学
遗传学
复合材料
作者
Qi Xie,Sea On Lee,Nitya Vissamsetti,Si‐Kao Guo,Margaret E. Johnson,Stephen D. Fried
标识
DOI:10.1002/anie.202305178
摘要
Protein-based biomaterials have played a key role in tissue engineering, and additional exciting applications as self-healing materials and sustainable polymers are emerging. Over the past few decades, recombinant expression and production of various fibrous proteins from microbes have been demonstrated; however, the resulting proteins typically must then be purified and processed by humans to form usable fibers and materials. Here, we show that the Gram-positive bacterium Bacillus subtilis can be programmed to secrete silk through its translocon via an orthogonal signal peptide/peptidase pair. Surprisingly, we discover that this translocation mechanism drives the silk proteins to assemble into fibers spontaneously on the cell surface, in a process we call secretion-catalyzed assembly (SCA). Secreted silk fibers form self-healing hydrogels with minimal processing. Alternatively, the fibers retained on the membrane provide a facile route to create engineered living materials from Bacillus cells. This work provides a blueprint to achieve autonomous assembly of protein biomaterials in useful morphologies directly from microbial factories.
科研通智能强力驱动
Strongly Powered by AbleSci AI