A review study on early detection of pancreatic ductal adenocarcinoma using artificial intelligence assisted diagnostic methods

医学 胰腺癌 胰腺导管腺癌 磁共振成像 癌症 分子成像 阶段(地层学) 内镜超声 放射科 腺癌 内科学 古生物学 生物技术 生物 体内
作者
PC Sijithra,N. Santhi,N. Ramasamy
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:166: 110972-110972 被引量:6
标识
DOI:10.1016/j.ejrad.2023.110972
摘要

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, chemo-refractory and recalcitrant cancer and increases the number of deaths. With just around 1 in 4 individuals having respectable tumours, PDAC is frequently discovered when it is in an advanced stage. Accordingly, ED of PDAC improves patient survival. Subsequently, this paper reviews the early detection of PDAC, initially, the work presented an overview of PDAC. Subsequently, it reviews the molecular biology of pancreatic cancer and the development of molecular biomarkers are represented. This article illustrates the importance of identifying PDCA, the Immune Microenvironment of Pancreatic Cancer. Consequently, in this review, traditional and non-traditional imaging techniques are elucidated, traditional and non-traditional methods like endoscopic ultrasound, Multidetector CT, CT texture analysis, PET-CT, magnetic resonance imaging, diffusion-weighted imaging, secondary signs of pancreatic cancer, and molecular imaging. The use of artificial intelligence in pancreatic cancer, novel MRI techniques, and the future directions of AI for PDAC detection and prognosis is then described. Additionally, the research problem definition and motivation, current trends and developments, state of art of survey, and objective of the research are demonstrated in the review. Consequently, this review concluded that Artificial Intelligence Assisted Diagnostic Methods with MRI images can be proposed in future to improve the specificity and the sensitivity of the work, and to classify malignant PDAC with greater accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
默默琳完成签到,获得积分10
1秒前
Wian发布了新的文献求助10
2秒前
尔信完成签到 ,获得积分10
2秒前
icel完成签到,获得积分10
2秒前
Akim应助科研通管家采纳,获得10
3秒前
科研助手6应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
科研助手6应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
李健应助PMX采纳,获得10
3秒前
动漫大师发布了新的文献求助10
5秒前
黄可以完成签到,获得积分10
5秒前
7秒前
3237924531发布了新的文献求助10
10秒前
Cc8完成签到,获得积分10
10秒前
llg发布了新的文献求助10
14秒前
sen123完成签到,获得积分10
15秒前
16秒前
段段发布了新的文献求助10
21秒前
25秒前
无花果应助霸气的梦露采纳,获得10
25秒前
cdercder应助清新的音响采纳,获得10
26秒前
调皮静竹发布了新的文献求助10
26秒前
28秒前
小AB发布了新的文献求助10
28秒前
28秒前
30秒前
32秒前
Tonald Yang发布了新的文献求助10
34秒前
34秒前
34秒前
开放映冬完成签到,获得积分10
35秒前
感性的芹菜完成签到,获得积分10
35秒前
36秒前
韩hqf发布了新的文献求助10
36秒前
勤劳凡雁完成签到,获得积分10
38秒前
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323664
关于积分的说明 10215380
捐赠科研通 3038867
什么是DOI,文献DOI怎么找? 1667677
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339