亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

1D Gradient-Weighted Class Activation Mapping, Visualizing Decision Process of Convolutional Neural Network-Based Models in Spectroscopy Analysis

可视化 可解释性 卷积神经网络 人工智能 模式识别(心理学) 计算机科学 过程(计算) 特征(语言学) 人工神经网络 化学 哲学 语言学 操作系统
作者
Guo-yang Shi,Hao-Ping Wu,Siheng Luo,Xinyu Lu,Bin Ren,Qian Zhang,Wei‐Qi Lin,R Chen,Ping Guo,Huabin Chen,Zhong‐Qun Tian,Guifang Shao,Yang Liu,Guokun Liu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (26): 9959-9966 被引量:15
标识
DOI:10.1021/acs.analchem.3c01101
摘要

Being characterized by the self-adaption and high accuracy, the deep learning-based models have been widely applied in the 1D spectroscopy-related field. However, the "black-box" operation and "end-to-end" working style of the deep learning normally bring the low interpretability, where a reliable visualization is highly demanded. Although there are some well-developed visualization methods, such as Class Activation Mapping (CAM) and Gradient-weighted Class Activation Mapping (Grad-CAM), for the 2D image data, they cannot correctly reflect the weights of the model when being applied to the 1D spectral data, where the importance of position information is not considered. Here, aiming at the visualization of Convolutional Neural Network-based models toward the qualitative and quantitative analysis of 1D spectroscopy, we developed a novel visualization algorithm (1D Grad-CAM) to more accurately display the decision-making process of the CNN-based models. Different from the classical Grad-CAM, with the removal of the gradient averaging (GAP) and the ReLU operations, a significantly improved correlation between the gradient and the spectral location and a more comprehensive spectral feature capture were realized for 1D Grad-CAM. Furthermore, the introduction of difference (purity or linearity) and feature contribute in the CNN output in 1D Grad-CAM achieved a reliable evaluation of the qualitative accuracy and quantitative precision of CNN-based models. Facing the qualitative and adulteration quantitative analysis of vegetable oils by the combination of Raman spectroscopy and ResNet, the visualization by 1D Grad-CAM well reflected the origin of the high accuracy and precision brought by ResNet. In general, 1D Grad-CAM provides a clear vision about the judgment criterion of CNN and paves the way for CNN to a broad application in the field of 1D spectroscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
CodeCraft应助曾经的小王采纳,获得10
6秒前
加油加油冲冲冲完成签到,获得积分10
7秒前
7秒前
Miku应助枭筱采纳,获得10
7秒前
tian完成签到,获得积分10
8秒前
韩维发布了新的文献求助10
8秒前
15秒前
20秒前
zhc完成签到 ,获得积分10
20秒前
21秒前
小昔应助枭筱采纳,获得10
22秒前
大个应助韩维采纳,获得10
23秒前
25秒前
25秒前
酷波er应助虚幻的采柳采纳,获得10
25秒前
bkagyin应助卫三采纳,获得10
26秒前
段段完成签到,获得积分10
28秒前
SciGPT应助lalalatiancai采纳,获得10
28秒前
今后应助曾经的小王采纳,获得10
30秒前
36秒前
apt完成签到 ,获得积分10
38秒前
卫三发布了新的文献求助10
39秒前
想不出来完成签到 ,获得积分10
41秒前
江离完成签到 ,获得积分10
43秒前
xiaxiao应助Vision820采纳,获得100
45秒前
49秒前
wangyang完成签到 ,获得积分10
49秒前
iorpi完成签到,获得积分10
50秒前
51秒前
51秒前
沉默白猫完成签到 ,获得积分10
55秒前
57秒前
yueying完成签到,获得积分10
1分钟前
刘刘刘关注了科研通微信公众号
1分钟前
Luminous应助科研通管家采纳,获得10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
1分钟前
暗哑行于秋关注了科研通微信公众号
1分钟前
领导范儿应助曾经的小王采纳,获得10
1分钟前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集(1953—2003) 700
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811626
求助须知:如何正确求助?哪些是违规求助? 3355933
关于积分的说明 10378426
捐赠科研通 3072824
什么是DOI,文献DOI怎么找? 1687749
邀请新用户注册赠送积分活动 811781
科研通“疑难数据库(出版商)”最低求助积分说明 766831