CRISPR-Cas systems mediated biosensing and applications in food safety detection

清脆的 食品安全 生化工程 生物技术 风险分析(工程) 粮食安全 纳米技术 计算机科学 环介导等温扩增 计算生物学 生物 业务 工程类 农业 食品科学 材料科学 遗传学 基因 生态学 DNA
作者
Jianghua Liu,Di Wu,Jiahui Chen,Shijie Jia,Jian Chen,Yongning Wu,Guoliang Li
出处
期刊:Critical Reviews in Food Science and Nutrition [Taylor & Francis]
卷期号:64 (10): 2960-2985 被引量:25
标识
DOI:10.1080/10408398.2022.2128300
摘要

Food safety, closely related to economic development of food industry and public health, has become a global concern and gained increasing attention worldwide. Effective detection technology is of great importance to guarantee food safety. Although several classical detection methods have been developed, they have some limitations in portability, selectivity, and sensitivity. The emerging CRISPR-Cas systems, uniquely integrating target recognition specificity, signal transduction, and efficient signal amplification abilities, possess superior specificity and sensitivity, showing huge potential to address aforementioned challenges and develop next-generation techniques for food safety detection. In this review, we focus on recent progress of CRISPR-Cas mediated biosensing and their applications in food safety monitoring. The properties and principles of commonly used CRISPR-Cas systems are highlighted. Notably, the frequently coupled nucleic acid amplification strategies to enhance their selectivity and sensitivity, especially isothermal amplification methods, as well as various signal output modes are also systematically summarized. Meanwhile, the application of CRISPR-Cas systems-based biosensors in food safety detection including foodborne virus, foodborne bacteria, food fraud, genetically modified organisms (GMOs), toxins, heavy metal ions, antibiotic residues, and pesticide residues is comprehensively described. Furthermore, the current challenges and future prospects in this field are tentatively discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
鸣笛应助可耐的冰萍采纳,获得30
3秒前
4秒前
yybaobao完成签到,获得积分10
5秒前
英姑应助读书的时候采纳,获得10
7秒前
7秒前
Akim应助George采纳,获得10
8秒前
顾矜应助Zzz采纳,获得10
9秒前
慈祥的煎蛋完成签到,获得积分10
9秒前
Lucas应助一只冬瓜zZ采纳,获得10
9秒前
科目三应助butterflycat采纳,获得10
10秒前
Lee发布了新的文献求助20
12秒前
13秒前
13秒前
Orange应助机灵水卉采纳,获得10
14秒前
15秒前
16秒前
16秒前
充电宝应助霸气乐天采纳,获得10
16秒前
17秒前
angelis完成签到,获得积分10
19秒前
19秒前
大胆绮兰发布了新的文献求助10
20秒前
Zzz发布了新的文献求助10
20秒前
等等发布了新的文献求助10
21秒前
零零完成签到 ,获得积分10
23秒前
西扬发布了新的文献求助10
23秒前
斯人完成签到 ,获得积分10
23秒前
Owen应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得20
23秒前
隐形曼青应助科研通管家采纳,获得10
24秒前
Akim应助科研通管家采纳,获得10
24秒前
是羽曦呀应助科研通管家采纳,获得10
24秒前
是羽曦呀应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
酷波er应助科研通管家采纳,获得30
24秒前
Lucas应助科研通管家采纳,获得10
24秒前
24秒前
不想熬夜完成签到,获得积分10
25秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097022
求助须知:如何正确求助?哪些是违规求助? 3634645
关于积分的说明 11521452
捐赠科研通 3345157
什么是DOI,文献DOI怎么找? 1838452
邀请新用户注册赠送积分活动 906081
科研通“疑难数据库(出版商)”最低求助积分说明 823435