已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A new proposal for the prediction of an aircraft engine fuel consumption: a novel CNN-BiLSTM deep neural network model

均方误差 平均绝对百分比误差 人工神经网络 深度学习 卷积神经网络 人工智能 燃料效率 计算机科学 近似误差 机器学习 模式识别(心理学) 统计 工程类 数学 算法 汽车工程
作者
Sedat Metlek
出处
期刊:Aircraft Engineering and Aerospace Technology [Emerald (MCB UP)]
卷期号:95 (5): 838-848 被引量:16
标识
DOI:10.1108/aeat-05-2022-0132
摘要

Purpose The purpose of this study is to develop and test a new deep learning model to predict aircraft fuel consumption. For this purpose, real data obtained from different landings and take-offs were used. As a result, a new hybrid convolutional neural network (CNN)-bi-directional long short term memory (BiLSTM) model was developed as intended. Design/methodology/approach The data used are divided into training and testing according to the k-fold 5 value. In this study, 13 different parameters were used together as input parameters. Fuel consumption was used as the output parameter. Thus, the effect of many input parameters on fuel flow was modeled simultaneously using the deep learning method in this study. In addition, the developed hybrid model was compared with the existing deep learning models long short term memory (LSTM) and BiLSTM. Findings In this study, when tested with LSTM, one of the existing deep learning models, values of 0.9162, 6.476, and 5.76 were obtained for R 2 , root mean square error (RMSE), and mean absolute percentage error (MAPE), respectively. For the BiLSTM model when tested, values of 0.9471, 5.847 and 4.62 were obtained for R 2 , RMSE and MAPE, respectively. In the proposed hybrid model when tested, values of 0.9743, 2.539 and 1.62 were obtained for R 2 , RMSE and MAPE, respectively. The results obtained according to the LSTM and BiLSTM models are much closer to the actual fuel consumption values. The error of the models used was verified against the actual fuel flow reports, and an average absolute percent error value of less than 2% was obtained. Originality/value In this study, a new hybrid CNN-BiLSTM model is proposed. The proposed model is trained and tested with real flight data for fuel consumption estimation. As a result of the test, it is seen that it gives much better results than the LSTM and BiLSTM methods found in the literature. For this reason, it can be used in many different engine types and applications in different fields, especially the turboprop engine used in the study. Because it can be applied to different engines than the engine type used in the study, it can be easily integrated into many simulation models.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助better采纳,获得10
刚刚
鱼鱼鱼完成签到,获得积分10
刚刚
眉姐姐的藕粉桂花糖糕完成签到 ,获得积分10
2秒前
turui完成签到 ,获得积分10
4秒前
6秒前
英勇听兰完成签到 ,获得积分10
7秒前
笨鸟先飞完成签到 ,获得积分10
7秒前
9秒前
13秒前
科研通AI6.1应助英勇听兰采纳,获得10
13秒前
无限素发布了新的文献求助10
15秒前
Gryff完成签到 ,获得积分10
18秒前
Stalin完成签到,获得积分10
19秒前
万能图书馆应助abc采纳,获得10
20秒前
神山识完成签到,获得积分10
21秒前
lz发布了新的文献求助10
22秒前
小栗子完成签到,获得积分10
25秒前
34秒前
36秒前
hx完成签到 ,获得积分10
37秒前
37秒前
水博士发布了新的文献求助10
40秒前
笨笨含羞草完成签到,获得积分10
40秒前
大个应助博士后采纳,获得10
42秒前
abc发布了新的文献求助10
44秒前
ldzjiao完成签到 ,获得积分0
47秒前
大意的雨双完成签到 ,获得积分10
49秒前
abc完成签到,获得积分20
51秒前
xionggege完成签到,获得积分10
54秒前
LELE完成签到 ,获得积分10
57秒前
拼搏绿柳完成签到,获得积分0
59秒前
小齐爱科研完成签到,获得积分10
1分钟前
lun完成签到 ,获得积分10
1分钟前
碳酸氢钠完成签到,获得积分10
1分钟前
诸葛小哥哥完成签到 ,获得积分0
1分钟前
速溶baka完成签到,获得积分10
1分钟前
心怡完成签到,获得积分10
1分钟前
Mr.Ren发布了新的文献求助10
1分钟前
1分钟前
zp19877891完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Separating Singapore from British India 300
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5860370
求助须知:如何正确求助?哪些是违规求助? 6355885
关于积分的说明 15642267
捐赠科研通 4974084
什么是DOI,文献DOI怎么找? 2683104
邀请新用户注册赠送积分活动 1626676
关于科研通互助平台的介绍 1583882

今日热心研友

Wait201113
26 10
科研通AI6.2
7 100
热心市民小红花
100
123456
60
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10