已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DeepGenBind: a novel deep learning model for predicting transcription factor binding sites

计算机科学 转录因子 卷积神经网络 编码 DNA结合位点 深度学习 抄写(语言学) k-mer公司 人工智能 计算生物学 DNA测序 生物 遗传学 发起人 基因 基因表达 语言学 哲学
作者
Wei Wang,Xiaolin Jiao,Sun Bin,Shihao Liang,Xianfang Wang,Yun Zhou
标识
DOI:10.1109/bibm55620.2022.9994984
摘要

Transcription factors are a class of protein factors that bind directly or indirectly to RNA polymerases and regulate the initiation of transcription by recognizing cis-acting elements in the DNA sequence. The prediction of transcription factor binding sites is an important part of the study of gene transcriptional regulation. Therefore, accurate prediction of TFBS helps one to understand and study the spatiotemporal nature of transcriptional regulation of target genes by different transcription factors. In recent years, an increasing number of deep learning methods have been used to predict transcription factor binding sites, however, existing methods still much room to improve performance. In this paper, we present a deep learning framework combining convolutional neural networks and recurrent neural networks to predict transcription factor binding sites, called DeepGenBind, for the systematic identification of transcription factor binding sites from DNA sequences. The novelty of our proposed approach relies on two key aspects: (1) the framework combines a three-layer parallel convolutional neural network CNN with a two-layer LSTM to efficiently extract useful features from large-scale genomic sequences obtained by high-throughput sequencing techniques (2) the use of k-mer coding to transform DNA sequences, with the transformed short sequences allowing for better data reading. Experimental results on 165 datasets from ENCODE show that DeepGenBind outperforms several other state-of-the-art methods in identifying transcription factor binding sites. In addition, we tested the effect of varying the k-mer vector length on model performance, demonstrating the variation in model performance under different k-mer related parameter settings. Overall, DeepGenBind is a useful tool for the cost-effective and accurate identification of potential transcription factor binding sites in biological genomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
剑指东方是为谁应助青苔采纳,获得20
5秒前
田様应助懵懂的易蓉采纳,获得10
14秒前
14秒前
俭朴的跳跳糖完成签到 ,获得积分10
18秒前
半夏发布了新的文献求助10
18秒前
24秒前
24秒前
Valley完成签到,获得积分20
25秒前
25秒前
Meteor636完成签到 ,获得积分10
28秒前
CipherSage应助abcdefghi__lmnop采纳,获得10
29秒前
29秒前
桐桐应助半夏采纳,获得10
30秒前
30秒前
乐乐应助Capybara采纳,获得10
34秒前
懵懂的易蓉完成签到,获得积分20
38秒前
38秒前
Jan发布了新的文献求助10
39秒前
tuanheqi发布了新的文献求助20
39秒前
41秒前
41秒前
科目三应助GQ采纳,获得10
43秒前
WIsh完成签到 ,获得积分10
43秒前
diu发布了新的文献求助10
43秒前
温柔的妙晴完成签到,获得积分10
43秒前
Georgechan完成签到,获得积分10
44秒前
45秒前
完美时间线完成签到,获得积分10
45秒前
冰棒比冰冰完成签到 ,获得积分10
46秒前
慎独而已发布了新的文献求助10
47秒前
香蕉觅云应助完美时间线采纳,获得10
49秒前
52秒前
hhan完成签到,获得积分10
53秒前
在水一方应助Dreamer.采纳,获得10
53秒前
顾矜应助科研通管家采纳,获得10
54秒前
54秒前
55秒前
coolkid应助科研通管家采纳,获得10
55秒前
酷波er应助科研通管家采纳,获得10
55秒前
shy完成签到,获得积分10
55秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3901551
求助须知:如何正确求助?哪些是违规求助? 3446381
关于积分的说明 10844541
捐赠科研通 3171486
什么是DOI,文献DOI怎么找? 1752306
邀请新用户注册赠送积分活动 847120
科研通“疑难数据库(出版商)”最低求助积分说明 789711