A comprehensive systematic review of deep learning methods for hyperspectral images classification

高光谱成像 水准点(测量) 计算机科学 机器学习 深度学习 抓住 人工智能 模式识别(心理学) 数据挖掘 地理 地图学 程序设计语言
作者
Pallavi Ranjan,Ashish Girdhar
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:43 (17): 6221-6306 被引量:8
标识
DOI:10.1080/01431161.2022.2133579
摘要

ABSTRACTABSTRACTThe remarkable growth of deep learning (DL) algorithms in hyperspectral images (HSIs) in recent years has garnered a lot of research space. This study examines and analyses over 250 newly proposed breakthroughs, the majority from 2019 onwards, that focussed on DL methods for HSI classification. Initially, a meta-analysis was performed to analyse the state-of-the-art literature, followed by an in-depth investigation of the performance of DL models on benchmark hyperspectral datasets. It provides an adequate grasp of how DL models are employed with the suggested improvisations and evaluates the performance of these state-of-the-art models. It investigates the accuracy of benchmark hyperspectral datasets by applying the newly proposed DL models. This study discusses the challenges that researchers have faced and the solutions that have been proposed. In particular, the scarcity of non-traditional hyperspectral data sets with labels impedes the performance of novel DL algorithms. As a result, this article clarifies the supervised, semi-supervised, and unsupervised training modes employed by the models and analyses the performance of the DL models while utilizing them.KEYWORDS: Hyperspectral imagesimage classificationdeep learningsystematic analysisconvolutional neural network AcknowledgementThe author(s) received no financial support for the research, authorship, and publication of this article.Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.Data availabilityThe data was collected from the Scopus website and discussed in the data collection section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃香菜发布了新的文献求助10
1秒前
方香旋发布了新的文献求助30
1秒前
失眠的香菇完成签到 ,获得积分10
3秒前
4秒前
Wilbert完成签到 ,获得积分10
5秒前
英俊的铭应助胡房晓采纳,获得10
5秒前
cqq完成签到,获得积分10
5秒前
5秒前
科目三应助永恒星采纳,获得10
7秒前
吉吉完成签到,获得积分10
7秒前
哈哈一世发布了新的文献求助10
7秒前
ziying126完成签到,获得积分10
8秒前
一叶知秋应助偏偏雨渐渐采纳,获得10
8秒前
顺利毕业发布了新的文献求助10
8秒前
炙热乌冬面完成签到 ,获得积分20
8秒前
一叶知秋应助kitwang采纳,获得10
8秒前
万能图书馆应助段盼兰采纳,获得10
9秒前
搜集达人应助cerium采纳,获得20
10秒前
沉默寄凡发布了新的文献求助10
10秒前
坦率的匪应助CCC采纳,获得10
10秒前
渡鸦发布了新的文献求助10
11秒前
eyekalon完成签到,获得积分10
11秒前
14秒前
方香旋发布了新的文献求助10
14秒前
16秒前
323431完成签到,获得积分10
16秒前
沉默寄凡发布了新的文献求助10
17秒前
可靠艳一完成签到 ,获得积分10
17秒前
林轩完成签到 ,获得积分10
17秒前
17秒前
SciGPT应助高大侠采纳,获得10
18秒前
19秒前
胡房晓发布了新的文献求助10
20秒前
玖东发布了新的文献求助10
20秒前
20秒前
晓晓雪完成签到 ,获得积分10
21秒前
丘比特应助KevinT采纳,获得10
22秒前
23秒前
24秒前
25秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4056189
求助须知:如何正确求助?哪些是违规求助? 3594277
关于积分的说明 11419707
捐赠科研通 3320136
什么是DOI,文献DOI怎么找? 1825593
邀请新用户注册赠送积分活动 896641
科研通“疑难数据库(出版商)”最低求助积分说明 817971