ASAP: Aligning Simulation and Real-World Physics for Learning Agile Humanoid Whole-Body Skills

敏捷软件开发 计算机科学 软件工程
作者
Tairan He,Jiawei Gao,Wenli Xiao,Yuanhang Zhang,Zi Wang,Jiashun Wang,Zhengyi Luo,Guanqi He,Nikhil Sobanbab,Chengfeng Pan,Zhengyi Yi,Guannan Qu,Kris Kitani,Jessica K. Hodgins,Linxi Fan,Yuke Zhu,Changliu Liu,Guanya Shi
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2502.01143
摘要

Humanoid robots hold the potential for unparalleled versatility in performing human-like, whole-body skills. However, achieving agile and coordinated whole-body motions remains a significant challenge due to the dynamics mismatch between simulation and the real world. Existing approaches, such as system identification (SysID) and domain randomization (DR) methods, often rely on labor-intensive parameter tuning or result in overly conservative policies that sacrifice agility. In this paper, we present ASAP (Aligning Simulation and Real-World Physics), a two-stage framework designed to tackle the dynamics mismatch and enable agile humanoid whole-body skills. In the first stage, we pre-train motion tracking policies in simulation using retargeted human motion data. In the second stage, we deploy the policies in the real world and collect real-world data to train a delta (residual) action model that compensates for the dynamics mismatch. Then, ASAP fine-tunes pre-trained policies with the delta action model integrated into the simulator to align effectively with real-world dynamics. We evaluate ASAP across three transfer scenarios: IsaacGym to IsaacSim, IsaacGym to Genesis, and IsaacGym to the real-world Unitree G1 humanoid robot. Our approach significantly improves agility and whole-body coordination across various dynamic motions, reducing tracking error compared to SysID, DR, and delta dynamics learning baselines. ASAP enables highly agile motions that were previously difficult to achieve, demonstrating the potential of delta action learning in bridging simulation and real-world dynamics. These results suggest a promising sim-to-real direction for developing more expressive and agile humanoids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助青梧衔云采纳,获得10
1秒前
寒冷的浩轩完成签到,获得积分10
2秒前
墨酒子完成签到,获得积分10
2秒前
领导范儿应助施以歌采纳,获得10
2秒前
3秒前
HUI发布了新的文献求助10
3秒前
小蘑菇应助wangqq采纳,获得10
5秒前
上官若男应助hyman1218采纳,获得20
5秒前
子车茗应助国足预备员采纳,获得30
5秒前
6秒前
何佳完成签到,获得积分10
6秒前
Ycz完成签到 ,获得积分10
9秒前
中国任完成签到 ,获得积分10
9秒前
10秒前
LLY发布了新的文献求助10
12秒前
朴素的大地完成签到,获得积分20
12秒前
12秒前
Mu发布了新的文献求助10
13秒前
晓竼完成签到,获得积分10
14秒前
CY发布了新的文献求助30
14秒前
木木完成签到,获得积分10
15秒前
orixero应助我们的交集采纳,获得10
15秒前
个性的雪旋完成签到 ,获得积分10
16秒前
嗯哼哈哈发布了新的文献求助10
16秒前
华仔应助哈哈嘻嘻采纳,获得10
17秒前
Burke发布了新的文献求助10
18秒前
AAA影像诊断完成签到 ,获得积分20
18秒前
冷酷的又亦完成签到,获得积分10
19秒前
20秒前
Lara发布了新的文献求助10
20秒前
戚雅柔完成签到 ,获得积分10
20秒前
22秒前
24秒前
hyman1218发布了新的文献求助20
24秒前
orixero应助1_1采纳,获得10
24秒前
25秒前
26秒前
27秒前
zinc完成签到,获得积分10
27秒前
ChenXY发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
(The) Founding Fathers of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4452195
求助须知:如何正确求助?哪些是违规求助? 3919334
关于积分的说明 12164827
捐赠科研通 3569446
什么是DOI,文献DOI怎么找? 1960153
邀请新用户注册赠送积分活动 999489
科研通“疑难数据库(出版商)”最低求助积分说明 894459