Personal Identification Using Embedded Raspberry Pi-Based Face Recognition Systems

树莓皮 鉴定(生物学) 计算机科学 面部识别系统 人工智能 嵌入式系统 模式识别(心理学) 物联网 生物 植物
作者
Sebastian Pecolt,Andrzej Błażejewski,Tomasz Królikowski,Igor Maciejewski,Kacper Gierula,Sebastian Głowiński
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:15 (2): 887-887
标识
DOI:10.3390/app15020887
摘要

Facial recognition technology has significantly advanced in recent years, with promising applications in fields ranging from security to consumer electronics. Its importance extends beyond convenience, offering enhanced security measures for sensitive areas and seamless user experiences in everyday devices. This study focuses on the development and validation of a facial recognition system utilizing a Haar cascade classifier and the AdaBoost machine learning algorithm. The system leverages characteristic facial features—distinct, measurable attributes used to identify and differentiate faces within images. A biometric facial recognition system was implemented on a Raspberry Pi microcomputer, capable of detecting and identifying faces using a self-contained reference image database. Verification involved selecting the similarity threshold, a critical factor influencing the balance between accuracy, security, and user experience in biometric systems. Testing under various environmental conditions, facial expressions, and user demographics confirmed the system’s accuracy and efficiency, achieving an average recognition time of 10.5 s under different lighting conditions, such as daylight, artificial light, and low-light scenarios. It is shown that the system’s accuracy and scalability can be enhanced through testing with larger databases, hardware upgrades like higher-resolution cameras, and advanced deep learning algorithms to address challenges such as extreme facial angles. Threshold optimization tests with six male participants revealed a value that effectively balances accuracy and efficiency. While the system performed effectively under controlled conditions, challenges such as biometric similarities and vulnerabilities to spoofing with printed photos underscore the need for additional security measures, such as thermal imaging. Potential applications include access control, surveillance, and statistical data collection, highlighting the system’s versatility and relevance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学习完成签到 ,获得积分10
刚刚
科科通通完成签到,获得积分10
2秒前
3秒前
小小咸鱼完成签到 ,获得积分10
3秒前
5秒前
优雅的帅哥完成签到 ,获得积分10
6秒前
8秒前
HiNDT发布了新的文献求助10
12秒前
15秒前
21秒前
汤绮菱完成签到,获得积分10
21秒前
明亮豆芽完成签到 ,获得积分10
22秒前
阿良完成签到 ,获得积分10
28秒前
顺心的猪完成签到 ,获得积分10
32秒前
虞无声完成签到,获得积分10
38秒前
老迟到的土豆完成签到 ,获得积分10
40秒前
牛马完成签到 ,获得积分10
47秒前
i2stay完成签到,获得积分10
52秒前
53秒前
CC完成签到,获得积分10
54秒前
CC发布了新的文献求助10
56秒前
柴yuki完成签到 ,获得积分10
59秒前
充电宝应助CC采纳,获得10
1分钟前
harden9159完成签到,获得积分10
1分钟前
萧然完成签到,获得积分10
1分钟前
贺知什么书完成签到,获得积分10
1分钟前
Hao完成签到,获得积分10
1分钟前
了然完成签到,获得积分10
1分钟前
科研通AI5应助辣椒面采纳,获得10
1分钟前
9527完成签到,获得积分10
1分钟前
赛车手完成签到,获得积分10
1分钟前
zijingsy完成签到 ,获得积分10
1分钟前
科研不是科幻完成签到,获得积分20
1分钟前
Shrimp完成签到 ,获得积分10
1分钟前
香菜皮蛋完成签到 ,获得积分10
1分钟前
淡定语柔完成签到 ,获得积分10
1分钟前
辣椒面完成签到,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776037
求助须知:如何正确求助?哪些是违规求助? 3321607
关于积分的说明 10206344
捐赠科研通 3036668
什么是DOI,文献DOI怎么找? 1666435
邀请新用户注册赠送积分活动 797424
科研通“疑难数据库(出版商)”最低求助积分说明 757839