Learning Accurate Label-Specific Features From Partially Multilabeled Data

计算机科学 人工智能 特征选择 班级(哲学) 模式识别(心理学) 选择(遗传算法) 遮罩(插图) 特征(语言学) 集合(抽象数据类型) 多标签分类 基本事实 降维 机器学习 艺术 哲学 视觉艺术 程序设计语言 语言学
作者
Tiantian Xu,Yuanyuan Xu,Shiyu Yang,Binghao Li,Wenjie Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2023.3241921
摘要

Feature selection is an effective dimensionality reduction technique, which can speed up an algorithm and improve model performance such as predictive accuracy and result comprehensibility. The study of selecting label-specific features for each class label has attracted considerable attention since each class label might be determined by some inherent characteristics, where precise label information is required to guide label-specific feature selection. However, obtaining noise-free labels is quite difficult and impractical. In reality, each instance is often annotated by a candidate label set that comprises multiple ground-truth labels and other false-positive labels, termed partial multilabel (PML) learning scenario. Here, false-positive labels concealed in a candidate label set might induce the selection of false label-specific features while masking the intrinsic label correlations, which misleads the selection of relevant features and compromises the selection performance. To address this issue, a novel two-stage partial multilabel feature selection (PMLFS) approach is proposed, which elicits credible labels to guide accurate label-specific feature selection. First, the label confidence matrix is learned to help elicit ground-truth labels from the candidate label set via the label structure reconstruction strategy, each element of which indicates how likely a class label is ground truth. After that, based on distilled credible labels, a joint selection model, including label-specific feature learner and common feature learner, is designed to learn accurate label-specific features to each class label and common features for all class labels. Besides, label correlations are fused into the features selection process to facilitate the generation of an optimal feature subset. Extensive experimental results clearly validate the superiority of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理向真完成签到,获得积分10
刚刚
白白白发布了新的文献求助10
刚刚
刚刚
共享精神应助忐忑的尔容采纳,获得10
刚刚
ruby发布了新的文献求助10
1秒前
1秒前
1秒前
achilles完成签到,获得积分10
2秒前
3秒前
onyourleft完成签到,获得积分10
3秒前
猪猪hero发布了新的文献求助10
3秒前
核桃发布了新的文献求助10
4秒前
5秒前
ED应助caihong1采纳,获得10
5秒前
谢青发布了新的文献求助10
6秒前
cuidalice完成签到,获得积分10
6秒前
6秒前
2150号发布了新的文献求助10
6秒前
7秒前
7秒前
河马完成签到,获得积分10
8秒前
8秒前
持续奔跑的小周同学完成签到,获得积分20
9秒前
杭城完成签到,获得积分10
9秒前
烟花应助xdh采纳,获得30
10秒前
10秒前
被淹死的鱼4U完成签到,获得积分10
11秒前
2150号完成签到,获得积分10
12秒前
文献互助发布了新的文献求助10
12秒前
13秒前
元宵宵完成签到,获得积分10
13秒前
wuwa完成签到,获得积分10
14秒前
14秒前
沐林杨发布了新的文献求助10
14秒前
满意机器猫完成签到 ,获得积分10
15秒前
15秒前
15秒前
张一完成签到 ,获得积分20
16秒前
16秒前
wzy完成签到,获得积分10
17秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4114515
求助须知:如何正确求助?哪些是违规求助? 3653029
关于积分的说明 11567520
捐赠科研通 3356986
什么是DOI,文献DOI怎么找? 1843910
邀请新用户注册赠送积分活动 909779
科研通“疑难数据库(出版商)”最低求助积分说明 826509