Learning Accurate Label-Specific Features From Partially Multilabeled Data

计算机科学 人工智能 特征选择 班级(哲学) 模式识别(心理学) 选择(遗传算法) 遮罩(插图) 特征(语言学) 集合(抽象数据类型) 多标签分类 基本事实 降维 机器学习 艺术 哲学 视觉艺术 程序设计语言 语言学
作者
Tiantian Xu,Yuanyuan Xu,Shiyu Yang,Binghao Li,Wenjie Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2023.3241921
摘要

Feature selection is an effective dimensionality reduction technique, which can speed up an algorithm and improve model performance such as predictive accuracy and result comprehensibility. The study of selecting label-specific features for each class label has attracted considerable attention since each class label might be determined by some inherent characteristics, where precise label information is required to guide label-specific feature selection. However, obtaining noise-free labels is quite difficult and impractical. In reality, each instance is often annotated by a candidate label set that comprises multiple ground-truth labels and other false-positive labels, termed partial multilabel (PML) learning scenario. Here, false-positive labels concealed in a candidate label set might induce the selection of false label-specific features while masking the intrinsic label correlations, which misleads the selection of relevant features and compromises the selection performance. To address this issue, a novel two-stage partial multilabel feature selection (PMLFS) approach is proposed, which elicits credible labels to guide accurate label-specific feature selection. First, the label confidence matrix is learned to help elicit ground-truth labels from the candidate label set via the label structure reconstruction strategy, each element of which indicates how likely a class label is ground truth. After that, based on distilled credible labels, a joint selection model, including label-specific feature learner and common feature learner, is designed to learn accurate label-specific features to each class label and common features for all class labels. Besides, label correlations are fused into the features selection process to facilitate the generation of an optimal feature subset. Extensive experimental results clearly validate the superiority of the proposed approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
超浓抹茶椰完成签到,获得积分10
1秒前
Owen应助endorphin采纳,获得10
1秒前
Luos完成签到,获得积分10
1秒前
飞翔的鸣完成签到,获得积分0
1秒前
tianlu完成签到,获得积分10
1秒前
qin发布了新的文献求助10
1秒前
118QQ完成签到,获得积分10
1秒前
嗯哼完成签到 ,获得积分10
2秒前
2秒前
科研通AI6应助ivy66x采纳,获得10
2秒前
lh发布了新的文献求助10
2秒前
2秒前
ziyue发布了新的文献求助10
2秒前
3秒前
3秒前
阿秋完成签到,获得积分10
3秒前
www完成签到 ,获得积分10
4秒前
李胜完成签到,获得积分20
4秒前
清脆问柳完成签到,获得积分10
4秒前
旋转胡萝卜完成签到,获得积分10
5秒前
Weilu完成签到 ,获得积分10
5秒前
Bruce完成签到,获得积分10
5秒前
6秒前
Xieshengmei发布了新的文献求助10
6秒前
闪闪曼卉完成签到,获得积分10
6秒前
loin完成签到,获得积分10
7秒前
7秒前
懒惰扼杀激情完成签到 ,获得积分10
8秒前
三分之一发布了新的文献求助10
8秒前
8秒前
s300yn发布了新的文献求助10
9秒前
沈心靖发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
嘛籽m完成签到 ,获得积分10
10秒前
10秒前
妙aaa完成签到,获得积分10
11秒前
Joker_Li完成签到,获得积分10
11秒前
Tracy完成签到,获得积分10
11秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Expectations: Teaching Writing from the Reader's Perspective 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5503766
求助须知:如何正确求助?哪些是违规求助? 4599252
关于积分的说明 14467370
捐赠科研通 4533143
什么是DOI,文献DOI怎么找? 2484232
邀请新用户注册赠送积分活动 1467460
关于科研通互助平台的介绍 1440274