Employing Supervised Algorithms for the Prediction of Nanomaterial’s Antioxidant Efficiency

计算机科学 机器学习 抗氧化剂 算法 人工智能 生物 生物化学
作者
Mahsa Mirzaei,Irini Furxhi,Finbarr Murphy,Martin Mullins
出处
期刊:International Journal of Molecular Sciences [MDPI AG]
卷期号:24 (3): 2792-2792 被引量:4
标识
DOI:10.3390/ijms24032792
摘要

Reactive oxygen species (ROS) are compounds that readily transform into free radicals. Excessive exposure to ROS depletes antioxidant enzymes that protect cells, leading to oxidative stress and cellular damage. Nanomaterials (NMs) exhibit free radical scavenging efficiency representing a potential solution for oxidative stress-induced disorders. This study aims to demonstrate the application of machine learning (ML) algorithms for predicting the antioxidant efficiency of NMs. We manually compiled a comprehensive dataset based on a literature review of 62 in vitro studies. We extracted NMs’ physico-chemical (P-chem) properties, the NMs’ synthesis technique and various experimental conditions as input features to predict the antioxidant efficiency measured by a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Following data pre-processing, various regression models were trained and validated. The random forest model showed the highest predictive performance reaching an R2 = 0.83. The attribute importance analysis revealed that the NM’s type, core-size and dosage are the most important attributes influencing the prediction. Our findings corroborate with those of the prior research landscape regarding the importance of P-chem characteristics. This study expands the application of ML in the nano-domain beyond safety-related outcomes by capturing the functional performance. Accordingly, this study has two objectives: (1) to develop a model to forecast the antioxidant efficiency of NMs to complement conventional in vitro assays and (2) to underline the lack of a comprehensive database and the scarcity of relevant data and/or data management practices in the nanotechnology field, especially with regards to functionality assessments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助小康采纳,获得10
1秒前
caoju发布了新的文献求助10
1秒前
完美世界应助如梦采纳,获得10
1秒前
qq完成签到 ,获得积分10
2秒前
Agrale发布了新的文献求助30
4秒前
肖林发布了新的文献求助10
5秒前
王建平完成签到 ,获得积分10
6秒前
8秒前
FashionBoy应助zj采纳,获得10
8秒前
10秒前
如梦完成签到,获得积分10
12秒前
Agrale完成签到,获得积分10
13秒前
唐白云发布了新的文献求助10
13秒前
乐乐应助肖林采纳,获得10
14秒前
Lucas应助Giggle采纳,获得10
16秒前
爆米花应助小康采纳,获得10
17秒前
17秒前
KY完成签到,获得积分10
17秒前
17秒前
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
Akim应助科研通管家采纳,获得10
17秒前
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
18秒前
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI6应助科研通管家采纳,获得200
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
Mic应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
Mic应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557683
求助须知:如何正确求助?哪些是违规求助? 4642757
关于积分的说明 14668976
捐赠科研通 4584191
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459533