Artificial intelligence-driven transformations in low-carbon energy structure: Evidence from China

中国 碳纤维 能量(信号处理) 经济 计算机科学 地理 数学 统计 考古 算法 复合数
作者
Weiliang Tao,Shimei Weng,Xueli Chen,Fawaz Baddar ALHussan,Malin Song
出处
期刊:Energy Economics [Elsevier BV]
卷期号:136: 107719-107719 被引量:20
标识
DOI:10.1016/j.eneco.2024.107719
摘要

The widespread integration of artificial intelligence (AI) technology in the realms of energy and the environment has emerged as a catalyst for transformative shifts toward low-carbon energy structures. However, existing literature and practical applications have yet to delve into the intricate ways in which intelligent technology influences energy structures. Consequently, this study addresses this gap by constructing a comprehensive theoretical model that encompasses robots and differentiated energy inputs. By drawing on the Chinese case, this research investigates the impact of AI on low-carbon energy structure transformation, both theoretically and empirically. The study's results reveal that AI technology significantly advances the cause of low-carbon energy transformation. Notably, this effect is manifested in the post-Industry 4.0 era and regions endowed with abundant renewable energy resources and strong governmental support for innovation. Rigorous robustness tests substantiate the existence of this relationship. Furthermore, adopting smart technology fosters energy structure transformation through industrial restructuring, and introduces the energy rebound effect, thereby partially offsetting its positive impact. Importantly, the study underscores that the efficacy of AI is further heightened when the influx of innovation factors surpasses a certain threshold. These findings furnish crucial evidence and policy insights for China and other developing nations, offering guidance on accelerating energy transitions and attaining carbon neutrality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光珍完成签到,获得积分10
1秒前
1秒前
4秒前
4秒前
5秒前
lmz完成签到,获得积分10
7秒前
lxh完成签到 ,获得积分10
7秒前
8秒前
dingm2发布了新的文献求助10
8秒前
贰卷发布了新的文献求助10
9秒前
大力水手不爱吃菠菜完成签到 ,获得积分10
10秒前
吹泡泡的红豆完成签到 ,获得积分10
13秒前
14秒前
打打应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得30
15秒前
Akim应助科研通管家采纳,获得10
15秒前
打打应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
lxy应助科研通管家采纳,获得10
15秒前
ding应助科研通管家采纳,获得10
15秒前
沉默的婴完成签到 ,获得积分10
17秒前
17秒前
轨迹发布了新的文献求助20
19秒前
洗月完成签到,获得积分10
21秒前
22秒前
纯情母蟑螂完成签到 ,获得积分10
23秒前
24秒前
29秒前
实验室同学完成签到,获得积分10
30秒前
TOURIN平行完成签到,获得积分10
30秒前
大力水手不爱吃菠菜关注了科研通微信公众号
31秒前
纯情母蟑螂关注了科研通微信公众号
31秒前
yy关闭了yy文献求助
33秒前
34秒前
34秒前
无花果应助GGbond采纳,获得10
38秒前
斯文败类应助趙途嘵生采纳,获得10
39秒前
Alan发布了新的文献求助10
39秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097250
求助须知:如何正确求助?哪些是违规求助? 3634879
关于积分的说明 11521967
捐赠科研通 3345316
什么是DOI,文献DOI怎么找? 1838543
邀请新用户注册赠送积分活动 906134
科研通“疑难数据库(出版商)”最低求助积分说明 823476