亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-view rotating machinery fault diagnosis with adaptive co-attention fusion network

计算机科学 断层(地质) 人工智能 代表(政治) 构造(python库) 特征(语言学) 机器学习 特征学习 模式识别(心理学) 数据挖掘 地质学 哲学 政治 地震学 程序设计语言 法学 语言学 政治学
作者
Xiaorong Liu,Jie Wang,Sa Meng,Xiwei Qiu,Guilin Zhao
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:122: 106138-106138 被引量:17
标识
DOI:10.1016/j.engappai.2023.106138
摘要

Intelligent fault diagnosis is an intriguing topic, attracting increasing interest in safe and reliable industrial production. Tremendous progress has been made in recent years in developing better fault diagnosis methods. Nevertheless, most methods rely on an individual vibration signal while ignoring the consensus and complementary between different views of the signal. Towards this end, we propose a novel method named COFU, i.e., a multi-view learning model with CO-attention FUsion network for rotating machinery fault diagnosis, which primarily exploits consensus and complementary across multiple views. Specifically, we first utilize three different encoders to construct high-level feature spaces of multiple views. Then the adaptive co-attention fusion network is designed to learn an integrated representation where rich associations among these feature spaces are fully considered. Finally, the fault detector fed by the fused representation is devised to diagnose the fault category. To affirm the efficacy of the proposed approach, a comprehensive evaluation has been conducted on the CWRU, SEU_bearing, and SEU_gear datasets. The results indicate that the accuracy of the COFU method is 100%, 99.95%, and 100%, respectively. Encouraging findings demonstrate that our method outperforms all the baseline methods. Furthermore, it is observed that the COFU method demonstrates improved performance when applied in noisy environments. This study offers a promising solution that ensures the great potential of multi-view fusion in rotating machinery fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123123完成签到 ,获得积分10
刚刚
斯寜应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
Owen应助lisen采纳,获得10
4秒前
123完成签到 ,获得积分10
9秒前
爆米花应助Kevin采纳,获得10
26秒前
阿乌大王完成签到,获得积分10
35秒前
Calyn完成签到 ,获得积分10
46秒前
caca完成签到,获得积分0
47秒前
58秒前
59秒前
lisen发布了新的文献求助10
1分钟前
www发布了新的文献求助10
1分钟前
1分钟前
Cosmosurfer完成签到,获得积分10
1分钟前
1分钟前
lisen完成签到,获得积分10
1分钟前
1分钟前
tszjw168完成签到 ,获得积分10
2分钟前
2分钟前
肆月完成签到 ,获得积分10
2分钟前
sailingluwl完成签到,获得积分10
2分钟前
豆子完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
高大的战斗机完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI5应助Linden_bd采纳,获得30
4分钟前
4分钟前
大水完成签到 ,获得积分10
4分钟前
满意的小鸽子完成签到,获得积分10
4分钟前
4分钟前
太阳cy完成签到 ,获得积分10
4分钟前
科研通AI2S应助南风采纳,获得10
5分钟前
Ricardo完成签到 ,获得积分10
5分钟前
深情安青应助山青水秀采纳,获得10
5分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795552
求助须知:如何正确求助?哪些是违规求助? 3340566
关于积分的说明 10300555
捐赠科研通 3057098
什么是DOI,文献DOI怎么找? 1677428
邀请新用户注册赠送积分活动 805404
科研通“疑难数据库(出版商)”最低求助积分说明 762507