102 AI-Based Molecular Classification of Diffuse Gliomas using Rapid, Label-Free Optical Imaging

医学 ATRX公司 胶质瘤 人工智能 医学物理学 深度学习 放射科 病理 计算机科学 突变 癌症研究 生物 基因 生物化学
作者
Todd Charles Hollon,John G. Golfinos,Daniel A. Orringer,Mitchel S. Berger,Shawn L. Hervey-Jumper,Karin M. Muraszko,Christian W. Freudiger,Jason Heth,Oren Sagher,Jiang Cheng,Asadur Chowdury,Mustafa Nasir Moin,Akhil Kondepudi,Alexander Arash Aabedi,Arjun Adapa,Wajd N. Al-Holou,Lisa I. Wadiura,Georg Widhalm,Volker Neuschmelting,David Reinecke,Sandra Camelo‐Piragua
出处
期刊:Neurosurgery [Lippincott Williams & Wilkins]
卷期号:69 (Supplement_1): 22-23
标识
DOI:10.1227/neu.0000000000002375_102
摘要

Molecular classification has transformed the management of brain tumors by enabling more accurate prognostication and personalized treatment. Access to timely molecular diagnostic testing for brain tumor patients is limited, complicating surgical and adjuvant treatment and obstructing clinical trial enrollment.By combining stimulated Raman histology (SRH), a rapid, label-free, non-consumptive, optical imaging method, and deep learning-based image classification, we are able to predict the molecular genetic features used by the World Health Organization (WHO) to define the adult-type diffuse glioma taxonomy, including IDH-1/2, 1p19q-codeletion, and ATRX loss. We developed a multimodal deep neural network training strategy that uses both SRH images and large-scale, public diffuse glioma genomic data (i.e. TCGA, CGGA, etc.) in order to achieve optimal molecular classification performance.One institution was used for model training (University of Michigan) and four institutions (NYU, UCSF, Medical University of Vienna, and University Hospital Cologne) were included for patient enrollment in the prospective testing cohort. Using our system, called DeepGlioma, we achieved an average molecular genetic classification accuracy of 93.2% and identified the correct diffuse glioma molecular subgroup with 91.5% accuracy within 2 minutes in the operating room. DeepGlioma outperformed conventional IDH1-R132H immunohistochemistry (94.2% versus 91.4% accuracy) as a first-line molecular diagnostic screening method for diffuse gliomas and can detect canonical and non-canonical IDH mutations.Our results demonstrate how artificial intelligence and optical histology can be used to provide a rapid and scalable alternative to wet lab methods for the molecular diagnosis of brain tumor patients during surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生物科研小白完成签到 ,获得积分10
3秒前
王淳完成签到 ,获得积分10
5秒前
5秒前
雪花完成签到 ,获得积分10
6秒前
7秒前
7秒前
星辰大海应助jibo采纳,获得10
7秒前
顾矜应助舒心的新波采纳,获得10
8秒前
陶醉的雪柳完成签到 ,获得积分10
11秒前
陶醉觅夏发布了新的文献求助10
12秒前
12秒前
blingl发布了新的文献求助10
12秒前
zy关注了科研通微信公众号
15秒前
16秒前
12345完成签到,获得积分10
16秒前
陶醉觅夏完成签到,获得积分10
22秒前
付小源完成签到,获得积分10
22秒前
23秒前
23秒前
Lucas应助dlfg采纳,获得10
24秒前
26秒前
28秒前
清飏发布了新的文献求助30
28秒前
秀丽香彤发布了新的文献求助10
29秒前
香蕉觅云应助云_123采纳,获得10
32秒前
zjq发布了新的文献求助10
32秒前
32秒前
lyp发布了新的文献求助10
33秒前
34秒前
iNk应助@金采纳,获得10
34秒前
Feifei133发布了新的文献求助10
34秒前
35秒前
清飏完成签到,获得积分20
37秒前
阮俏发布了新的文献求助10
38秒前
11发布了新的文献求助10
39秒前
英俊的铭应助zy采纳,获得10
43秒前
43秒前
zjq完成签到,获得积分10
43秒前
秀丽香彤完成签到,获得积分10
46秒前
Ghost完成签到,获得积分10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782096
求助须知:如何正确求助?哪些是违规求助? 3327562
关于积分的说明 10232109
捐赠科研通 3042513
什么是DOI,文献DOI怎么找? 1670006
邀请新用户注册赠送积分活动 799585
科研通“疑难数据库(出版商)”最低求助积分说明 758825