亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Occluded face recognition algorithm based on MFFPN with lightweight network

计算机科学 面部识别系统 面子(社会学概念) 人工智能 计算机视觉 模式识别(心理学) 社会科学 社会学
作者
Xinyan He,Xiujie Qu,Jiayu Liu,Xiwei Dong
标识
DOI:10.1109/itaic58329.2023.10408751
摘要

Face recognition is a biometric technology used to identify individuals by extracting their facial features. The current face recognition research based on deep learning in limited scenarios has made significant progress and is extensively applied in portable terminals like smartphones and laptops. However, in complex situations, such as posture changes accompanied by shadows or occlusions in facial images, some facial features are missing, resulting in poor performance of traditional face recognition algorithms and low recognition accuracy. To address the aforementioned problems, the approach in this study uses the lightweight MobileFaceN et (MFN) as the basic network, and then formulates a novel network structure (MFFPN) through fusion with the Feature Pyramid Network (FPN) structure, in order to combine low-level and high-level features more efficiently to acquire more comprehensive facial features. Furthermore, the integration of FPN causes a Complexity of the network, leading to overfitting of the network as the network size and computation increase. To solve this issue, the Dropout regularization technique is implemented to randomly deactivate a proportion of neurons in the network, allowing the network to reduce its size and computational requirements while avoiding overfitting. Subsequently, to enhance the network's generalization capabilities and stability, the PReLU activation function in the original network is replaced with the Mish activation function. The experimental results demonstrate that the final MFFPN in occluded facial recognition improves performance to a certain extent when comparing with MFN and other conventional networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘氓完成签到,获得积分20
6秒前
15秒前
Joy完成签到,获得积分20
15秒前
牛爷发布了新的文献求助10
21秒前
Lucas应助木禾火采纳,获得10
32秒前
牛爷完成签到,获得积分10
33秒前
十三发布了新的文献求助10
36秒前
39秒前
科目三应助科研通管家采纳,获得10
42秒前
嘿嘿应助科研通管家采纳,获得10
42秒前
43秒前
Hayat发布了新的文献求助20
45秒前
木禾火发布了新的文献求助10
47秒前
Lucas应助贪玩的万仇采纳,获得10
1分钟前
1分钟前
牛八先生完成签到,获得积分10
1分钟前
1分钟前
kingcoffee完成签到 ,获得积分10
1分钟前
1分钟前
kd1412应助哭泣的若翠采纳,获得10
1分钟前
Ava应助哭泣的若翠采纳,获得10
1分钟前
汉堡包应助哭泣的若翠采纳,获得10
1分钟前
嘿嘿应助科研通管家采纳,获得10
2分钟前
嘿嘿应助科研通管家采纳,获得10
2分钟前
2分钟前
slayers完成签到 ,获得积分10
3分钟前
镜花水月完成签到,获得积分10
3分钟前
3分钟前
4分钟前
十三完成签到,获得积分10
4分钟前
熄熄完成签到,获得积分10
4分钟前
熄熄发布了新的文献求助10
4分钟前
4分钟前
Akim应助科研通管家采纳,获得10
4分钟前
嘿嘿应助科研通管家采纳,获得10
4分钟前
嘿嘿应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
moon发布了新的文献求助10
5分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4130524
求助须知:如何正确求助?哪些是违规求助? 3667411
关于积分的说明 11600769
捐赠科研通 3365545
什么是DOI,文献DOI怎么找? 1849109
邀请新用户注册赠送积分活动 912878
科研通“疑难数据库(出版商)”最低求助积分说明 828355