Risk of papillary thyroid carcinoma and nodular goiter associated with exposure to semi-volatile organic compounds: A multi-pollutant assessment based on machine learning algorithms

结核(地质) 甲状腺结节 甲状腺癌 甲状腺 算法 甲状腺肿 医学 内科学 机器学习 数学 计算机科学 古生物学 生物
作者
Fei Wang,Yuanxin Lin,Jianing Xu,Fugui Wei,Simei Huang,Shifeng Wen,Huijiao Zhou,Yuwei Jiang,Haoyu Wang,Wenlong Ling,Xiangzhi Li,Xiaobo Yang
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:915: 169962-169962 被引量:10
标识
DOI:10.1016/j.scitotenv.2024.169962
摘要

Exposure to semi-volatile organic compounds (SVOCs) may link to thyroid nodule risk, but studies of mixed-SVOCs exposure effects are lacking. Traditional analytical methods are inadequate for dealing with mixed exposures, while machine learning (ML) seems to be a good way to fill the gaps in the field of environmental epidemiology research. Different ML algorithms were used to explore the relationship between mixed-SVOCs exposure and thyroid nodule. A 1:1:1 age- and gender-matched case-control study was conducted in which 96 serum SVOCs were measured in 50 papillary thyroid carcinoma (PTC), 50 nodular goiters (NG), and 50 controls. Different ML techniques such as Random Forest, AdaBoost were selected based on their predictive power, and variables were selected based on their weights in the models. Weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) were used to assess the mixed effects of the SVOCs exposure on thyroid nodule. Forty-three of 96 SVOCs with detection rate >80 % were included in the analysis. ML algorithms showed a consistent selection of SVOCs associated with thyroid nodule. Fluazifop-butyl and fenpropathrin are positively associated with PTC and NG in single compound models (all P < 0.05). WQS model shows that exposure to mixed-SVOCs was associated with an increased risk of PTC and NG, with the mixture dominated by fenpropathrin, followed by fluazifop-butyl and propham. In the BKMR model, mixtures showed a significant positive association with thyroid nodule risk at high exposure levels, and fluazifop-butyl showed positive effects associated with PTC and NG. This study confirms the feasibility of ML methods for variable selection in high-dimensional complex data and showed that mixed exposure to SVOCs was associated with increased risk of PTC and NG. The observed association was primarily driven by fluazifop-butyl and fenpropathrin. The findings warranted further investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
有魅力哈密瓜完成签到,获得积分10
2秒前
2秒前
dudu完成签到,获得积分10
3秒前
小牛完成签到,获得积分20
3秒前
科研皇完成签到,获得积分10
3秒前
3秒前
qian完成签到,获得积分10
4秒前
5秒前
Hugo完成签到,获得积分10
5秒前
鸣笛应助王甜甜采纳,获得30
5秒前
5秒前
大地上的鱼完成签到,获得积分10
6秒前
小小邹完成签到,获得积分10
6秒前
ysxl发布了新的文献求助10
6秒前
阿辉完成签到,获得积分10
7秒前
隐形觅翠完成签到,获得积分10
8秒前
8秒前
9秒前
achris发布了新的文献求助10
9秒前
hihihihi完成签到,获得积分10
9秒前
10秒前
乐正熠彤发布了新的文献求助10
10秒前
hhhhhh关注了科研通微信公众号
11秒前
科研柠檬精酸酸完成签到,获得积分10
11秒前
爆米花应助小王小王采纳,获得10
11秒前
YYN发布了新的文献求助10
11秒前
深情安青应助三个菠萝包采纳,获得50
11秒前
赘婿应助zxx采纳,获得10
11秒前
lzhu发布了新的文献求助10
11秒前
11秒前
Zt215926完成签到,获得积分10
12秒前
搜集达人应助JEEH采纳,获得10
12秒前
12秒前
valorb完成签到,获得积分0
13秒前
13秒前
结实惜灵发布了新的文献求助10
14秒前
小蘑菇应助研友_郦闭月采纳,获得10
14秒前
Ava应助windcreator采纳,获得10
14秒前
恋如雪止完成签到,获得积分20
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4307003
求助须知:如何正确求助?哪些是违规求助? 3829141
关于积分的说明 11982276
捐赠科研通 3469763
什么是DOI,文献DOI怎么找? 1902712
邀请新用户注册赠送积分活动 950152
科研通“疑难数据库(出版商)”最低求助积分说明 852058