Risk of papillary thyroid carcinoma and nodular goiter associated with exposure to semi-volatile organic compounds: A multi-pollutant assessment based on machine learning algorithms

结核(地质) 甲状腺结节 甲状腺癌 甲状腺 算法 甲状腺肿 医学 内科学 机器学习 数学 计算机科学 生物 古生物学
作者
Fei Wang,Yuanxin Lin,Jianing Xu,Fugui Wei,Simei Huang,Shifeng Wen,Huijiao Zhou,Yuwei Jiang,Haoyu Wang,Wenlong Ling,Xiangzhi Li,Xiaobo Yang
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:915: 169962-169962 被引量:6
标识
DOI:10.1016/j.scitotenv.2024.169962
摘要

Exposure to semi-volatile organic compounds (SVOCs) may link to thyroid nodule risk, but studies of mixed-SVOCs exposure effects are lacking. Traditional analytical methods are inadequate for dealing with mixed exposures, while machine learning (ML) seems to be a good way to fill the gaps in the field of environmental epidemiology research. Different ML algorithms were used to explore the relationship between mixed-SVOCs exposure and thyroid nodule. A 1:1:1 age- and gender-matched case-control study was conducted in which 96 serum SVOCs were measured in 50 papillary thyroid carcinoma (PTC), 50 nodular goiters (NG), and 50 controls. Different ML techniques such as Random Forest, AdaBoost were selected based on their predictive power, and variables were selected based on their weights in the models. Weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) were used to assess the mixed effects of the SVOCs exposure on thyroid nodule. Forty-three of 96 SVOCs with detection rate >80 % were included in the analysis. ML algorithms showed a consistent selection of SVOCs associated with thyroid nodule. Fluazifop-butyl and fenpropathrin are positively associated with PTC and NG in single compound models (all P < 0.05). WQS model shows that exposure to mixed-SVOCs was associated with an increased risk of PTC and NG, with the mixture dominated by fenpropathrin, followed by fluazifop-butyl and propham. In the BKMR model, mixtures showed a significant positive association with thyroid nodule risk at high exposure levels, and fluazifop-butyl showed positive effects associated with PTC and NG. This study confirms the feasibility of ML methods for variable selection in high-dimensional complex data and showed that mixed exposure to SVOCs was associated with increased risk of PTC and NG. The observed association was primarily driven by fluazifop-butyl and fenpropathrin. The findings warranted further investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒服的如蓉完成签到,获得积分10
刚刚
1秒前
雨诺完成签到 ,获得积分10
2秒前
老谢医生发布了新的文献求助10
3秒前
麻烦~发布了新的文献求助20
3秒前
晚风吹人醒啊完成签到,获得积分10
5秒前
李健的粉丝团团长应助save采纳,获得10
6秒前
正直的如凡完成签到,获得积分10
6秒前
6秒前
fzhou完成签到 ,获得积分10
7秒前
8秒前
有足量NaCl完成签到,获得积分10
9秒前
善学以致用应助诸葛藏藏采纳,获得10
9秒前
ppc发布了新的文献求助10
9秒前
完美世界应助hyekyo采纳,获得10
10秒前
hululu完成签到,获得积分10
11秒前
DONG发布了新的文献求助10
11秒前
17852573662完成签到,获得积分10
11秒前
13秒前
15秒前
吉吉国王发布了新的文献求助20
17秒前
zy发布了新的文献求助20
17秒前
18秒前
科研搞我发布了新的文献求助10
19秒前
21秒前
21秒前
22秒前
22秒前
totoo2021完成签到,获得积分10
23秒前
在水一方应助尛瞐慶成采纳,获得10
23秒前
麻烦~完成签到,获得积分10
24秒前
24秒前
DDD发布了新的文献求助10
26秒前
27秒前
时光发布了新的文献求助10
27秒前
Logan完成签到,获得积分10
28秒前
ww完成签到,获得积分10
28秒前
吉吉国王完成签到,获得积分10
28秒前
洽洽瓜子shine完成签到,获得积分10
32秒前
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796582
求助须知:如何正确求助?哪些是违规求助? 3341785
关于积分的说明 10307798
捐赠科研通 3058389
什么是DOI,文献DOI怎么找? 1678185
邀请新用户注册赠送积分活动 805918
科研通“疑难数据库(出版商)”最低求助积分说明 762841