SUGAR: Spherical ultrafast graph attention framework for cortical surface registration

人工智能 计算机科学 图像配准 失真(音乐) 深度学习 图形 相似性(几何) 特征学习 机器学习 计算机视觉 算法 理论计算机科学 图像(数学) 放大器 计算机网络 带宽(计算)
作者
Jianxun Ren,Ning An,Youjia Zhang,Danyang Wang,Zhenyu Sun,Lin Cong,Weigang Cui,Weiwei Wang,Ying Zhou,Wei Zhang,Qingyu Hu,Ping Zhang,Dan Hu,Danhong Wang,Hesheng Liu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:94: 103122-103122 被引量:3
标识
DOI:10.1016/j.media.2024.103122
摘要

Cortical surface registration plays a crucial role in aligning cortical functional and anatomical features across individuals. However, conventional registration algorithms are computationally inefficient. Recently, learning-based registration algorithms have emerged as a promising solution, significantly improving processing efficiency. Nonetheless, there remains a gap in the development of a learning-based method that exceeds the state-of-the-art conventional methods simultaneously in computational efficiency, registration accuracy, and distortion control, despite the theoretically greater representational capabilities of deep learning approaches. To address the challenge, we present SUGAR, a unified unsupervised deep-learning framework for both rigid and non-rigid registration. SUGAR incorporates a U-Net-based spherical graph attention network and leverages the Euler angle representation for deformation. In addition to the similarity loss, we introduce fold and multiple distortion losses to preserve topology and minimize various types of distortions. Furthermore, we propose a data augmentation strategy specifically tailored for spherical surface registration to enhance the registration performance. Through extensive evaluation involving over 10,000 scans from 7 diverse datasets, we showed that our framework exhibits comparable or superior registration performance in accuracy, distortion, and test-retest reliability compared to conventional and learning-based methods. Additionally, SUGAR achieves remarkable sub-second processing times, offering a notable speed-up of approximately 12,000 times in registering 9,000 subjects from the UK Biobank dataset in just 32 min. This combination of high registration performance and accelerated processing time may greatly benefit large-scale neuroimaging studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助负责的方盒采纳,获得10
1秒前
shanage应助倪妮采纳,获得10
1秒前
LeeSunE发布了新的文献求助10
2秒前
清脆慕山发布了新的文献求助10
3秒前
唠叨的富完成签到,获得积分10
3秒前
4秒前
隐形曼青应助Cici采纳,获得10
5秒前
浮游应助MWT采纳,获得10
5秒前
toto完成签到 ,获得积分10
5秒前
士多啤梨完成签到,获得积分10
5秒前
瞌睡球关注了科研通微信公众号
6秒前
7秒前
万能图书馆应助nnnd77采纳,获得10
8秒前
11秒前
z123完成签到,获得积分10
12秒前
yf关注了科研通微信公众号
13秒前
herschelwu完成签到,获得积分10
14秒前
14秒前
14秒前
彳山一完成签到,获得积分10
15秒前
今后应助科研通管家采纳,获得10
17秒前
Owen应助科研通管家采纳,获得10
17秒前
SciGPT应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
顾矜应助回答采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
草莓月亮应助科研通管家采纳,获得10
18秒前
Akim应助科研通管家采纳,获得10
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
wanci应助科研通管家采纳,获得10
18秒前
李爱国应助科研通管家采纳,获得10
18秒前
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
Cici发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4762057
求助须知:如何正确求助?哪些是违规求助? 4101764
关于积分的说明 12692293
捐赠科研通 3817765
什么是DOI,文献DOI怎么找? 2107335
邀请新用户注册赠送积分活动 1131993
关于科研通互助平台的介绍 1011057