An enhanced multimodal fusion deep learning neural network for lung cancer classification

深度学习 人工智能 医学诊断 模式 肺癌 计算机科学 机器学习 人工神经网络 医学影像学 癌症 医学 病理 社会科学 社会学 内科学
作者
Sangeetha S.K.B,Sandeep Kumar Mathivanan,P. Karthikeyan,Hariharan Rajadurai,Basu Dev Shivahare,Saurav Mallik,Hong Qin
出处
期刊:Systems and soft computing [Elsevier]
卷期号:6: 200068-200068 被引量:42
标识
DOI:10.1016/j.sasc.2023.200068
摘要

Cancer remains one of the leading causes of mortality worldwide, necessitating continuous advancements in early diagnosis and treatment. Deep learning, a subset of artificial intelligence, has emerged as a powerful tool in the field of medical image analysis, revolutionizing the way cancer is detected and diagnosed. The study discusses the various modalities employed in lung cancer diagnosis, such as medical imaging (e.g., radiology and pathology), genomics, and clinical data, highlighting the unique challenges associated with each domain. The proposed Multimodal Fusion Deep Neural Network (MFDNN) architecture design effectively integrates information from different modalities (e.g., medical imaging, genomics, clinical data) to enhance lung cancer diagnostic accuracy. Furthermore, it delves into the integration of clinical data, electronic health records, and multimodal approaches to improve the accuracy and reliability of lung cancer diagnosis. Moreover, we highlight the ethical considerations surrounding the deployment of Artificial Intelligence (AI) in clinical settings and the need for robust validation and regulatory guidelines. The Multimodal Fusion Deep Neural Network (MFDNN) achieves an exceptional accuracy rate of 92.5%, marking a significant breakthrough in the realm of medical AI. MFDNN excels in precision, with 87.4% accuracy in predicting cancer cases, and equally impresses in recall, capturing approximately 86.4% of actual cancerous cases. The F1-score of 86.2 further exemplifies MFDNN's ability to strike a harmonious equilibrium, ensuring both diagnostic accuracy and minimized missed diagnoses. The performance is compared with established methods like CNN, DNN, and ResNet. The results underscore MFDNN's pivotal role in revolutionizing lung cancer diagnosis, promising more accurate and timely identification of this critical condition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
西柚完成签到 ,获得积分10
2秒前
2秒前
青耕发布了新的文献求助20
2秒前
4秒前
李爱国应助www采纳,获得10
4秒前
yeye完成签到,获得积分10
5秒前
6秒前
Ywffffff发布了新的文献求助10
7秒前
英姑应助刻苦的晓蕾采纳,获得10
7秒前
量子星尘发布了新的文献求助10
10秒前
勤恳凡之完成签到,获得积分10
10秒前
玄之又玄完成签到,获得积分10
10秒前
友好凡霜发布了新的文献求助10
11秒前
小蘑菇应助打小就帅采纳,获得10
12秒前
bala发布了新的文献求助20
13秒前
14秒前
传奇3应助li采纳,获得10
15秒前
平安完成签到,获得积分10
17秒前
19秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
24秒前
24秒前
李伟发布了新的文献求助10
24秒前
SW完成签到,获得积分10
24秒前
afeiwoo完成签到,获得积分10
25秒前
娜娜完成签到,获得积分20
26秒前
yiyilan完成签到 ,获得积分20
26秒前
27秒前
躺平的洋仔完成签到,获得积分10
27秒前
杜du发布了新的文献求助10
30秒前
娜娜发布了新的文献求助10
30秒前
将将将应助年轻真好啊采纳,获得20
30秒前
zhouyu完成签到,获得积分10
31秒前
31秒前
丘比特应助笑傲采纳,获得10
34秒前
36秒前
李健应助淡淡涫采纳,获得10
36秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 666
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4254123
求助须知:如何正确求助?哪些是违规求助? 3786886
关于积分的说明 11885720
捐赠科研通 3437288
什么是DOI,文献DOI怎么找? 1886538
邀请新用户注册赠送积分活动 937680
科研通“疑难数据库(出版商)”最低求助积分说明 843382