亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ASSA-UNet: An Efficient UNet-Based Network for Chip Internal Defect Detection

计算机科学 炸薯条 人工智能 灰度 棱锥(几何) 像素 特征提取 计算机视觉 模式识别(心理学) RGB颜色模型 数学 电信 几何学
作者
Siyi Zhou,Qingwang Wang,Hua Wu,Qingbo Wang,Yuanqing Meng,Tao Shen
标识
DOI:10.1109/isctech60480.2023.00036
摘要

Extensive research has been conducted on deep learning-based methods for chip surface defect detection to enhance chip production efficiency and product quality. However, less attention has been given to internal defect detection methods after chip packaging, and practical issues still need to be addressed. Firstly, the detection method needs to have higher real-time performance due to the high degree of automation and large output in chip production. Additionally, the internal image of the chip is generated by X-ray inspection equipment, resulting in a grayscale image that lacks the color characteristics of the RGB image of chip surface. Finally, the deep learning-based detection methods face a challenge due to the very small pixel percentage of the defective chip region. To tackle these challenges, we introduce a highly efficient network named Atrous Spatial Pyramid Pooling (ASPP) and Spatial Attention UNet (ASSA-UNet), which integrates multi-scale feature fusion and attention mechanisms to detect chip internal defects. We thoroughly evaluate the performance of our proposed model on a self-built dataset(CIDX-ray) and compare it with other methods. The experimental results demonstrate the efficient and accurate segmentation of chip internal defects using our proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
有风的地方完成签到 ,获得积分10
1秒前
善学以致用应助辉辉采纳,获得20
7秒前
科研通AI6应助Gryphon采纳,获得10
9秒前
Hello应助Mo采纳,获得30
12秒前
浮游应助科研通管家采纳,获得10
13秒前
mashibeo应助科研通管家采纳,获得10
13秒前
ceeray23应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
ceeray23应助科研通管家采纳,获得10
14秒前
ceeray23应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
天天快乐应助蛋烘糕采纳,获得30
15秒前
燕一完成签到,获得积分20
20秒前
SciGPT应助OvO_4577采纳,获得10
22秒前
26秒前
MiaCong完成签到 ,获得积分10
28秒前
35秒前
35秒前
35秒前
36秒前
光轮2000发布了新的文献求助10
41秒前
libaoguo发布了新的文献求助10
41秒前
科研通AI2S应助热柯柯采纳,获得10
41秒前
45秒前
46秒前
46秒前
健健康康发布了新的文献求助10
51秒前
蓝桉完成签到 ,获得积分10
51秒前
ANKAR发布了新的文献求助10
53秒前
54秒前
高兴士晋发布了新的文献求助10
59秒前
1分钟前
1分钟前
1分钟前
lnx完成签到,获得积分20
1分钟前
悄悄拔尖儿完成签到 ,获得积分10
1分钟前
契合发布了新的文献求助20
1分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502707
求助须知:如何正确求助?哪些是违规求助? 4598475
关于积分的说明 14464188
捐赠科研通 4532037
什么是DOI,文献DOI怎么找? 2483794
邀请新用户注册赠送积分活动 1467025
关于科研通互助平台的介绍 1439644