Advanced metabolic engineering strategies for increasing artemisinin yield in Artemisia annua L.

青蒿素 青蒿 倍半萜内酯 生物 代谢工程 毛状体 生物技术 恶性疟原虫 植物 生物化学 疟疾 倍半萜 基因 免疫学
作者
Yongpeng Li,Yinkai Yang,Ling Li,Kexuan Tang,Xiaolong Hao,Guoyin Kai
出处
期刊:Horticulture research [Nature Portfolio]
卷期号:11 (2) 被引量:18
标识
DOI:10.1093/hr/uhad292
摘要

Abstract Artemisinin, also known as ‘Qinghaosu’, is a chemically sesquiterpene lactone containing an endoperoxide bridge. Due to the high activity to kill Plasmodium parasites, artemisinin and its derivatives have continuously served as the foundation for antimalarial therapies. Natural artemisinin is unique to the traditional Chinese medicinal plant Artemisia annua L., and its content in this plant is low. This has motivated the synthesis of this bioactive compound using yeast, tobacco, and Physcomitrium patens systems. However, the artemisinin production in these heterologous hosts is low and cannot fulfil its increasing clinical demand. Therefore, A. annua plants remain the major source of this bioactive component. Recently, the transcriptional regulatory networks related to artemisinin biosynthesis and glandular trichome formation have been extensively studied in A. annua. Various strategies including (i) enhancing the metabolic flux in artemisinin biosynthetic pathway; (ii) blocking competition branch pathways; (iii) using transcription factors (TFs); (iv) increasing peltate glandular secretory trichome (GST) density; (v) applying exogenous factors; and (vi) phytohormones have been used to improve artemisinin yields. Here we summarize recent scientific advances and achievements in artemisinin metabolic engineering, and discuss prospects in the development of high-artemisinin yielding A. annua varieties. This review provides new insights into revealing the transcriptional regulatory networks of other high-value plant-derived natural compounds (e.g., taxol, vinblastine, and camptothecin), as well as glandular trichome formation. It is also helpful for the researchers who intend to promote natural compounds production in other plants species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
诸青梦完成签到 ,获得积分10
1秒前
万能图书馆应助luo采纳,获得10
2秒前
通~发布了新的文献求助30
2秒前
3秒前
努力独行者完成签到,获得积分20
3秒前
DawnySun完成签到,获得积分10
4秒前
比格蹦蹦发布了新的文献求助10
5秒前
Xhhhhhh完成签到,获得积分10
5秒前
zuoyueyue完成签到,获得积分20
5秒前
6秒前
一颗馒头发布了新的文献求助30
6秒前
左手树完成签到,获得积分10
6秒前
zhaojs关注了科研通微信公众号
7秒前
一朵西兰花完成签到,获得积分10
8秒前
Maestro_S发布了新的文献求助30
9秒前
彭于晏应助忽闻水采纳,获得10
9秒前
12秒前
华仔应助lumine采纳,获得10
13秒前
15秒前
小熊跳舞完成签到,获得积分10
16秒前
烟花应助通~采纳,获得10
17秒前
wjx发布了新的文献求助10
17秒前
17秒前
小蘑菇应助易达采纳,获得10
17秒前
大气的玉米完成签到,获得积分10
18秒前
zhuzhu完成签到,获得积分10
18秒前
19秒前
ttt完成签到,获得积分10
20秒前
科研通AI6应助winni采纳,获得10
21秒前
21秒前
21秒前
NexusExplorer应助博大医采纳,获得30
22秒前
fengbeing完成签到,获得积分10
22秒前
Lllll发布了新的文献求助10
22秒前
跳跳虎发布了新的文献求助30
24秒前
25秒前
海蓝云天应助恩吉尔采纳,获得10
25秒前
天天快乐应助127采纳,获得10
26秒前
WZQ发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Jean-Jacques Rousseau et Geneve 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5156169
求助须知:如何正确求助?哪些是违规求助? 4351736
关于积分的说明 13550023
捐赠科研通 4194853
什么是DOI,文献DOI怎么找? 2300694
邀请新用户注册赠送积分活动 1300671
关于科研通互助平台的介绍 1245726