Experience is all you need: a large language model application of fine-tuned GPT-3.5 and RoBERTa for aspect-based sentiment analysis of college football stadium reviews

体育场 足球 大学足球 情绪分析 足球运动员 广告 社会学 计算机科学 业务 人工智能 政治学 数学 法学 几何学
作者
Tyreal Yizhou Qian,Weizhe Li,Hua Gong,Chad Seifried,Chenglong Xu
出处
期刊:Sport Management Review [Taylor & Francis]
卷期号:: 1-25 被引量:2
标识
DOI:10.1080/14413523.2024.2386467
摘要

Despite extensive research in service industries, fine-grained explorations of customer experience within spectator sports remain limited. This study pioneers a transfer learning approach grounded in a post-positivism paradigm, underpinned by an integrative customer experience framework for aspect-based sentiment analysis of user-generated content, shedding light on the complexity of the college football game day experience. Three fine-tuned large language models were employed to qualitatively identify and quantitatively analyze customer experience from Tripadvisor reviews on college football stadiums. Our findings indicated that fans' positive reactions to stimuli related to core (game dynamics), functional (facilities/services), emotional (intense feelings), and socialization (fan interactions/bonding) significantly increased the likelihood of them giving a five-star rating. Mitigating negative experiences across functional, emotional, socialization, safety, and monetary experience was crucial for achieving a top rating, with reducing negative functional issues and safety concerns having the greatest positive impact. Our study contributes to the sport management literature by establishing a unified view of customer experience, enabling a holistic conceptualization and operationalization of customer experience in spectator sports. Empirically, our research proposes targeted strategies to manage customer experience in college football and offers sport management professionals ready-to-use large language models along with detailed deployment guidelines tailored for distinct use cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助sunny采纳,获得10
3秒前
dennisysz发布了新的文献求助10
5秒前
Jasper应助MK采纳,获得10
6秒前
井井完成签到,获得积分20
8秒前
大喜子发布了新的文献求助10
13秒前
16秒前
李爱国应助五年又三年采纳,获得10
18秒前
19秒前
落后千雁发布了新的文献求助10
19秒前
20秒前
yimei完成签到,获得积分10
20秒前
23秒前
23秒前
coesite完成签到,获得积分10
25秒前
莉莉娅89发布了新的文献求助10
25秒前
26秒前
28秒前
e1发布了新的文献求助10
28秒前
落后千雁完成签到,获得积分10
29秒前
29秒前
你好好好发布了新的文献求助10
30秒前
suodeheng发布了新的文献求助18
31秒前
嘉嘉发布了新的文献求助10
33秒前
34秒前
Azyyyy完成签到,获得积分10
35秒前
科研通AI2S应助spujo采纳,获得30
42秒前
42秒前
Gakay发布了新的文献求助10
45秒前
非而者厚应助Wang采纳,获得10
45秒前
zmnzmnzmn应助coesite采纳,获得20
46秒前
小巧书竹完成签到,获得积分20
46秒前
幽默的念双完成签到,获得积分10
46秒前
唐唐完成签到 ,获得积分10
47秒前
锅包肉完成签到 ,获得积分10
49秒前
李健应助莉莉娅89采纳,获得10
52秒前
海bro完成签到 ,获得积分10
53秒前
53秒前
55秒前
dennisysz发布了新的文献求助10
57秒前
CipherSage应助疯狂的宛凝采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777470
求助须知:如何正确求助?哪些是违规求助? 3322795
关于积分的说明 10211897
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667178
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133