Two-Layer Attention Feature Pyramid Network for Small Object Detection

棱锥(几何) 特征(语言学) 图层(电子) 对象(语法) 人工智能 计算机科学 模式识别(心理学) 目标检测 计算机视觉 材料科学 数学 纳米技术 几何学 语言学 哲学
作者
Sheng Xiang,Junhao Ma,Shang Qun-li,Xianbao Wang,Defu Chen
出处
期刊:Cmes-computer Modeling in Engineering & Sciences [Tech Science Press]
卷期号:141 (1): 713-731 被引量:1
标识
DOI:10.32604/cmes.2024.052759
摘要

Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However, small objects are difficult to detect accurately because they contain less information.Many current methods, particularly those based on Feature Pyramid Network (FPN), address this challenge by leveraging multi-scale feature fusion.However, existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers, leading to suboptimal small object detection.To address this problem, we propose the Two-layer Attention Feature Pyramid Network (TA-FPN), featuring two key modules: the Two-layer Attention Module (TAM) and the Small Object Detail Enhancement Module (SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer, so that each layer contains similar semantic information, to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time, SODEM is introduced to strengthen the local features of the object, suppress background noise, enhance the information details of the small object, and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information, to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects in Context (MS COCO) and Pattern Analysis Statistical Modelling and Computational Learning, Visual Object Classes (PASCAL VOC) demonstrate the validity of the proposed method.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加油加油完成签到 ,获得积分10
刚刚
刚刚
YZzzJ发布了新的文献求助10
1秒前
YMM给YMM的求助进行了留言
1秒前
1秒前
yoga完成签到 ,获得积分10
1秒前
1秒前
微风完成签到,获得积分10
2秒前
秣旎发布了新的文献求助10
2秒前
李敬语完成签到,获得积分10
2秒前
虚幻的亦旋完成签到,获得积分10
3秒前
Mr.Su完成签到 ,获得积分10
4秒前
sjx1116完成签到 ,获得积分10
4秒前
李静完成签到,获得积分10
4秒前
Lanny完成签到 ,获得积分10
4秒前
风闻发布了新的文献求助10
5秒前
瘦瘦的饼干完成签到,获得积分10
5秒前
晓海完成签到,获得积分10
6秒前
英姑应助粒粒采纳,获得10
6秒前
王大炮完成签到,获得积分10
6秒前
传奇3应助CC采纳,获得30
7秒前
7秒前
老实幻姬发布了新的文献求助10
7秒前
橘笙完成签到,获得积分10
7秒前
我不到啊完成签到,获得积分10
7秒前
秣旎完成签到,获得积分10
8秒前
herococa应助元谷雪采纳,获得10
8秒前
8秒前
August完成签到,获得积分10
8秒前
yuan完成签到,获得积分10
8秒前
Owen应助hizj采纳,获得10
8秒前
8秒前
9秒前
行不通完成签到,获得积分10
9秒前
123完成签到 ,获得积分10
9秒前
9秒前
10秒前
咵嚓完成签到,获得积分10
10秒前
果实发布了新的文献求助10
10秒前
Orange应助风闻采纳,获得10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Italian Feminism of Sexual Difference: A Different Ecofeminist Thought 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3934738
求助须知:如何正确求助?哪些是违规求助? 3480165
关于积分的说明 11007649
捐赠科研通 3210077
什么是DOI,文献DOI怎么找? 1774023
邀请新用户注册赠送积分活动 860670
科研通“疑难数据库(出版商)”最低求助积分说明 797852