化学
活动站点
碳酸氢盐
组氨酸
二聚体
锌
碳酸酐酶Ⅱ
碳酸酐酶
立体化学
变构调节
氢氧化物
氢氧化锌
协调球
催化作用
结晶学
氨基酸
生物化学
无机化学
酶
有机化学
晶体结构
出处
期刊:The Enzymes
[Elsevier BV]
日期:2024-01-01
卷期号:: 65-91
标识
DOI:10.1016/bs.enz.2024.05.009
摘要
β-Carbonic anhydrases (β-CA; EC 4.2.1.1) are widespread zinc metalloenzymes which catalyze the interconversion of carbon dioxide and bicarbonate. They have been isolated in many pathogenic and non-pathogenic bacteria where they are involved in multiple roles, often related to their growth and survival. β-CAs are structurally distant from the CAs of other classes. In the active site, located at the interface of a fundamental dimer, the zinc ion is coordinated to two cysteines and one histidine. β-CAs have been divided in two subgroups depending on the nature of the fourth ligand on the zinc ion: class I have a zinc open configuration with a hydroxide ion completing the metal coordination, which is the catalytically active species in the mechanism proposed for the β-CAs similar to the well-known of α-CAs, while in class II an Asp residue substitute the hydroxide. This latter active site configuration has been showed to be typical of an inactive form at pH below 8. An Asp-Arg dyad is thought to play a key role in the pH-induced catalytic switch regulating the opening and closing of the active site in class II β-CAs, by displacing the zinc-bound solvent molecule. An allosteric site well-suited for bicarbonate stabilizes the inactive form. This bicarbonate binding site is composed by a triad of well conserved residues, strictly connected to the coordination state of the zinc ion. Moreover, the escort site is a promiscuous site for a variety of ligands, including bicarbonate, at the dimer interface, which may be the route for bicarbonate to the allosteric site.
科研通智能强力驱动
Strongly Powered by AbleSci AI