Symmetry-Augmented Multi-Agent Reinforcement Learning for Scalable UAV Trajectory Design and User Scheduling

计算机科学 强化学习 调度(生产过程) 可扩展性 分布式计算 杠杆(统计) 冗余(工程) 人工智能 数学优化 操作系统 数据库 数学
作者
Xuanhan Zhou,Jun Xiong,Haitao Zhao,Chao Yan,Jibo Wei
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:23 (12): 14127-14144
标识
DOI:10.1109/tmc.2024.3437679
摘要

Unmanned aerial vehicles (UAVs) as mobile base stations are recognized as effective means for emergency communications. The performance of such systems depends on the movement of UAVs and scheduling of ground users (GUs). However, devising an efficient algorithm to jointly optimize UAV trajectories and user scheduling is still challenging, especially in real-time scenarios lacking central controllers. Multi-agent deep reinforcement learning (MADRL) provides a promising solution to this problem. Nevertheless, as the numbers of UAVs and GUs increase, existing MADRL algorithms encounter scalability and sample efficiency issues. In this paper, we develop a novel symmetry-augmented MADRL approach for learning scalable UAV trajectory design and user scheduling policies. The core idea is to utilize symmetries to reduce the multi-agent state-action space and enhance sample efficiency. Specifically, we design a family of neural networks to learn individual policies, namely entity permutation equivariant policy networks (EP2Nets). EP2Nets effectively leverage the permutation symmetry to reduce redundancy in the state-action space. Additionally, we achieve data augmentation by exploiting rotational and reflection symmetries, further boosting sample efficiency. Finally, a Symmetric QMIX (SymmQMIX) algorithm is proposed by integrating the EP2Net and data augmentation method into the QMIX algorithm. Simulation results indicate that SymmQMIX significantly outperforms QMIX and other symmetry-enhanced algorithms, achieving a 4.5-fold increase in converged performance and a 100-fold improvement in sample efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
x跳完成签到,获得积分10
7秒前
冰魂应助Cc8采纳,获得10
8秒前
l127完成签到,获得积分20
10秒前
Aowu应助西乡塘塘主采纳,获得10
12秒前
12秒前
Wuhuijing完成签到,获得积分10
12秒前
zlimu发布了新的文献求助10
13秒前
今夕何夕完成签到,获得积分20
17秒前
上官若男应助苏雨康采纳,获得10
18秒前
19秒前
20秒前
西乡塘塘主完成签到,获得积分10
22秒前
彩色黑米发布了新的文献求助10
26秒前
猪猪hero应助科研通管家采纳,获得10
27秒前
27秒前
彭于彦祖应助科研通管家采纳,获得20
27秒前
大个应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
雨夜星空应助科研通管家采纳,获得10
27秒前
丘比特应助科研通管家采纳,获得10
27秒前
酷波er应助科研通管家采纳,获得10
27秒前
桐桐应助科研通管家采纳,获得10
28秒前
星辰大海应助科研通管家采纳,获得10
28秒前
猪猪hero应助科研通管家采纳,获得10
28秒前
爆米花应助科研通管家采纳,获得10
28秒前
aprilvanilla应助科研通管家采纳,获得10
28秒前
顾矜应助科研通管家采纳,获得10
28秒前
猪猪hero应助科研通管家采纳,获得10
28秒前
28秒前
雨夜星空应助科研通管家采纳,获得10
28秒前
猪猪hero应助科研通管家采纳,获得10
28秒前
ding应助科研通管家采纳,获得10
28秒前
Owen应助科研通管家采纳,获得10
28秒前
乐乐应助科研通管家采纳,获得10
29秒前
打打应助科研通管家采纳,获得10
29秒前
酷波er应助科研通管家采纳,获得10
29秒前
领导范儿应助科研通管家采纳,获得10
29秒前
29秒前
传奇3应助科研通管家采纳,获得10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776768
求助须知:如何正确求助?哪些是违规求助? 3322170
关于积分的说明 10209141
捐赠科研通 3037424
什么是DOI,文献DOI怎么找? 1666679
邀请新用户注册赠送积分活动 797625
科研通“疑难数据库(出版商)”最低求助积分说明 757944