Deep Network Regularization for Phasebased Magnetic Resonance Electrical Properties Tomography with Stein's Unbiased Risk Estimator

磁共振成像 估计员 断层摄影术 网络断层扫描 正规化(语言学) 数学 计算机科学 物理 人工智能 统计 医学 放射科 光学 推论
作者
Chuanjiang Cui,Kyu‐Jin Jung,Mohammed A. Al‐masni,Jun‐Hyeong Kim,Soo‐Yeon Kim,Mina Park,Shao Ying Huang,Se Young Chun,Donghyun Kim
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:3
标识
DOI:10.1109/tbme.2024.3438270
摘要

Magnetic resonance imaging (MRI) can extract the tissue conductivity values from in vivo data using the so-called phase-based magnetic resonance electrical properties tomography (MR-EPT). However, this procedure suffers from noise amplification caused by the use of the Laplacian operator. To counter this issue, we propose a novel preprocessing denoiser for magnetic resonance transceive phase images, operating in an unsupervised manner. Inspired by the deep image prior approach, we apply the random initialization of a convolutional neural network, which enforces an implicit regularization. Additionally, we introduce Stein's unbiased risk estimator, which is the unbiased estimator of the mean square error for optimizing the network without the need for label images. This modification not only tackles the overfitting problem inherent in the deep image prior approach but also operates within a purely unsupervised framework. In addition, instead of using phase images, we use real and imaginary images, which aligns with the theoretical model of the risk estimator. Our generative model needs neither the preparation of training datasets nor prior training procedure, and it maintains adaptability across various resolutions and signal-to-noise ratio levels. In testing. our method significantly diminished residual error remaining in phase maps, quantitatively as well as qualitatively, for both phantom and simulated brain data. Furthermore, it outperformed other denoising methods in reducing noise amplification and boundary error. When applied to healthy volunteer and patient data, the proposed method revealed reduced error in the reconstructed conductivity maps, with conductivity values aligning well with established literature values. To the best of our knowledge, this is the first blind approach using a purely unsupervised denoising framework that can implement a 2D phase-based MR-EPT reconstruction algorithm. The source code is available at https://github.com/Yonsei-MILab/Implicit-Regularization-forMREPT-with-SURE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
skycool完成签到,获得积分10
2秒前
浮游应助科研通管家采纳,获得10
5秒前
changping应助科研通管家采纳,获得10
5秒前
5秒前
NexusExplorer应助科研通管家采纳,获得30
5秒前
英姑应助科研通管家采纳,获得30
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
科研通AI2S应助Moment采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
烟花应助Li采纳,获得10
6秒前
星辰大海应助YSL采纳,获得10
7秒前
8秒前
9秒前
SciGPT应助曼丽新波采纳,获得10
9秒前
YCYycy完成签到,获得积分10
10秒前
11秒前
饼干小子发布了新的文献求助10
12秒前
Pendragon完成签到,获得积分10
13秒前
14秒前
从容果汁完成签到 ,获得积分10
14秒前
今后应助基2采纳,获得10
14秒前
15秒前
大个应助dpk采纳,获得10
15秒前
彭于晏应助wop111采纳,获得10
15秒前
15秒前
领导范儿应助zjtttt采纳,获得10
17秒前
FashionBoy应助活力的果汁采纳,获得10
18秒前
18秒前
18秒前
HMONEY发布了新的文献求助10
19秒前
19秒前
Moment发布了新的文献求助10
21秒前
21秒前
lu完成签到,获得积分10
21秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5214488
求助须知:如何正确求助?哪些是违规求助? 4390027
关于积分的说明 13668448
捐赠科研通 4251405
什么是DOI,文献DOI怎么找? 2332608
邀请新用户注册赠送积分活动 1330251
关于科研通互助平台的介绍 1283950