已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Network Regularization for Phasebased Magnetic Resonance Electrical Properties Tomography with Stein's Unbiased Risk Estimator

磁共振成像 估计员 断层摄影术 网络断层扫描 正规化(语言学) 数学 计算机科学 物理 人工智能 统计 医学 放射科 光学 推论
作者
Chuanjiang Cui,Kyu‐Jin Jung,Mohammed A. Al‐masni,Jun‐Hyeong Kim,Soo‐Yeon Kim,Mina Park,Shao Ying Huang,Se Young Chun,Donghyun Kim
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:3
标识
DOI:10.1109/tbme.2024.3438270
摘要

Magnetic resonance imaging (MRI) can extract the tissue conductivity values from in vivo data using the so-called phase-based magnetic resonance electrical properties tomography (MR-EPT). However, this procedure suffers from noise amplification caused by the use of the Laplacian operator. To counter this issue, we propose a novel preprocessing denoiser for magnetic resonance transceive phase images, operating in an unsupervised manner. Inspired by the deep image prior approach, we apply the random initialization of a convolutional neural network, which enforces an implicit regularization. Additionally, we introduce Stein's unbiased risk estimator, which is the unbiased estimator of the mean square error for optimizing the network without the need for label images. This modification not only tackles the overfitting problem inherent in the deep image prior approach but also operates within a purely unsupervised framework. In addition, instead of using phase images, we use real and imaginary images, which aligns with the theoretical model of the risk estimator. Our generative model needs neither the preparation of training datasets nor prior training procedure, and it maintains adaptability across various resolutions and signal-to-noise ratio levels. In testing. our method significantly diminished residual error remaining in phase maps, quantitatively as well as qualitatively, for both phantom and simulated brain data. Furthermore, it outperformed other denoising methods in reducing noise amplification and boundary error. When applied to healthy volunteer and patient data, the proposed method revealed reduced error in the reconstructed conductivity maps, with conductivity values aligning well with established literature values. To the best of our knowledge, this is the first blind approach using a purely unsupervised denoising framework that can implement a 2D phase-based MR-EPT reconstruction algorithm. The source code is available at https://github.com/Yonsei-MILab/Implicit-Regularization-forMREPT-with-SURE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青羽发布了新的文献求助10
3秒前
隐形曼青应助TaoJ采纳,获得10
4秒前
Abracadabra发布了新的文献求助10
4秒前
明理的雁发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
Hinsen完成签到,获得积分10
7秒前
8秒前
zhuming发布了新的文献求助10
9秒前
高赛文发布了新的文献求助10
9秒前
Zdh同学完成签到,获得积分10
10秒前
Hello应助322628采纳,获得10
10秒前
冷静冷风发布了新的文献求助10
12秒前
舒适新梅发布了新的文献求助10
12秒前
13秒前
科研通AI6.1应助xiaoxinbaba采纳,获得10
13秒前
14秒前
善学以致用应助zhuming采纳,获得10
14秒前
东方三问完成签到,获得积分10
14秒前
爆米花应助TTTT采纳,获得10
16秒前
时尚的爆米花完成签到 ,获得积分10
16秒前
上官若男应助林好人采纳,获得10
18秒前
20秒前
有点儿发布了新的文献求助10
20秒前
TaoJ发布了新的文献求助10
20秒前
21秒前
bounlent完成签到 ,获得积分10
21秒前
23秒前
lx完成签到,获得积分10
24秒前
25秒前
123发布了新的文献求助10
26秒前
322628发布了新的文献求助10
26秒前
27秒前
2306520发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
28秒前
29秒前
goncalo24完成签到,获得积分10
30秒前
Singularity应助超级万声采纳,获得10
30秒前
共享精神应助TaoJ采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779215
求助须知:如何正确求助?哪些是违规求助? 5646297
关于积分的说明 15451448
捐赠科研通 4910636
什么是DOI,文献DOI怎么找? 2642783
邀请新用户注册赠送积分活动 1590462
关于科研通互助平台的介绍 1544831