Deep Network Regularization for Phasebased Magnetic Resonance Electrical Properties Tomography with Stein's Unbiased Risk Estimator

磁共振成像 估计员 断层摄影术 网络断层扫描 正规化(语言学) 数学 计算机科学 物理 人工智能 统计 医学 放射科 光学 推论
作者
Chuanjiang Cui,Kyu‐Jin Jung,Mohammed A. Al‐masni,Jun‐Hyeong Kim,Soo‐Yeon Kim,Mina Park,Shao Ying Huang,Se Young Chun,Donghyun Kim
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:3
标识
DOI:10.1109/tbme.2024.3438270
摘要

Magnetic resonance imaging (MRI) can extract the tissue conductivity values from in vivo data using the so-called phase-based magnetic resonance electrical properties tomography (MR-EPT). However, this procedure suffers from noise amplification caused by the use of the Laplacian operator. To counter this issue, we propose a novel preprocessing denoiser for magnetic resonance transceive phase images, operating in an unsupervised manner. Inspired by the deep image prior approach, we apply the random initialization of a convolutional neural network, which enforces an implicit regularization. Additionally, we introduce Stein's unbiased risk estimator, which is the unbiased estimator of the mean square error for optimizing the network without the need for label images. This modification not only tackles the overfitting problem inherent in the deep image prior approach but also operates within a purely unsupervised framework. In addition, instead of using phase images, we use real and imaginary images, which aligns with the theoretical model of the risk estimator. Our generative model needs neither the preparation of training datasets nor prior training procedure, and it maintains adaptability across various resolutions and signal-to-noise ratio levels. In testing. our method significantly diminished residual error remaining in phase maps, quantitatively as well as qualitatively, for both phantom and simulated brain data. Furthermore, it outperformed other denoising methods in reducing noise amplification and boundary error. When applied to healthy volunteer and patient data, the proposed method revealed reduced error in the reconstructed conductivity maps, with conductivity values aligning well with established literature values. To the best of our knowledge, this is the first blind approach using a purely unsupervised denoising framework that can implement a 2D phase-based MR-EPT reconstruction algorithm. The source code is available at https://github.com/Yonsei-MILab/Implicit-Regularization-forMREPT-with-SURE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
Sofia完成签到,获得积分10
1秒前
1秒前
1秒前
123发布了新的文献求助10
1秒前
zho关闭了zho文献求助
2秒前
3秒前
敲木鱼完成签到,获得积分10
3秒前
希望天下0贩的0应助tann采纳,获得10
3秒前
fft发布了新的文献求助10
4秒前
搜集达人应助zzzz采纳,获得10
4秒前
惊鸿发布了新的文献求助10
4秒前
5秒前
蛋蛋完成签到,获得积分10
6秒前
111完成签到,获得积分10
6秒前
6秒前
9秒前
Ankher发布了新的文献求助30
9秒前
萤火淡淡完成签到 ,获得积分10
9秒前
韩莹莹发布了新的文献求助30
9秒前
woxin完成签到,获得积分10
9秒前
范书豪完成签到,获得积分10
10秒前
晨曦发布了新的文献求助10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
小米应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
遇上就这样吧应助bsf123采纳,获得10
11秒前
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
独特亦旋发布了新的文献求助10
12秒前
小蘑菇应助执笔曦倾年采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4662094
求助须知:如何正确求助?哪些是违规求助? 4044683
关于积分的说明 12511117
捐赠科研通 3737075
什么是DOI,文献DOI怎么找? 2063512
邀请新用户注册赠送积分活动 1093089
科研通“疑难数据库(出版商)”最低求助积分说明 973860