已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Layered deep learning for automatic mandibular segmentation in cone-beam computed tomography

豪斯多夫距离 分割 人工智能 锥束ct 计算机科学 一致性(知识库) 深度学习 核医学 模式识别(心理学) 计算机断层摄影术 医学 放射科
作者
Pieter-Jan Verhelst,A. Smolders,Thomas Beznik,Jeroen Meewis,Arne Vandemeulebroucke,Eman Shaheen,Adriaan Van Gerven,Holger Willems,Constantinus Politis,Reinhilde Jacobs
出处
期刊:Journal of Dentistry [Elsevier]
卷期号:114: 103786-103786 被引量:135
标识
DOI:10.1016/j.jdent.2021.103786
摘要

To develop and validate a layered deep learning algorithm which automatically creates three-dimensional (3D) surface models of the human mandible out of cone-beam computed tomography (CBCT) imaging.Two convolutional networks using a 3D U-Net architecture were combined and deployed in a cloud-based artificial intelligence (AI) model. The AI model was trained in two phases and iteratively improved to optimize the segmentation result using 160 anonymized full skull CBCT scans of orthognathic surgery patients (70 preoperative scans and 90 postoperative scans). Finally, the final AI model was tested by assessing timing, consistency, and accuracy on a separate testing dataset of 15 pre- and 15 postoperative full skull CBCT scans. The AI model was compared to user refined AI segmentations (RAI) and to semi-automatic segmentation (SA), which is the current clinical standard. The time needed for segmentation was measured in seconds. Intra- and inter-operator consistency were assessed to check if the segmentation protocols delivered reproducible results. The following consistency metrics were used: intersection over union (IoU), dice similarity coefficient (DSC), Hausdorff distance (HD), absolute volume difference and root mean square (RMS) distance. To evaluate the match of the AI and RAI results to those of the SA method, their accuracy was measured using IoU, DSC, HD, absolute volume difference and RMS distance.On average, SA took 1218.4s. RAI showed a significant drop (p<0.0001) in timing to 456.5s (2.7-fold decrease). The AI method only took 17s (71.3-fold decrease). The average intra-operator IoU for RAI was 99.5% compared to 96.9% for SA. For inter-operator consistency, RAI scored an IoU of 99.6% compared to 94.6% for SA. The AI method was always consistent by default. In both the intra- and inter-operator consistency assessments, RAI outperformed SA on all metrics indicative of better consistency. With SA as the ground truth, AI and RAI scored an IoU of 94.6% and 94.4%, respectively. All accuracy metrics were similar for AI and RAI, meaning that both methods produce 3D models that closely match those produced by SA.A layered 3D U-Net architecture deep learning algorithm, with and without additional user refinements, improves time-efficiency, reduces operator error, and provides excellent accuracy when benchmarked against the clinical standard.Semi-automatic segmentation in CBCT imaging is time-consuming and allows user-induced errors. Layered convolutional neural networks using a 3D U-Net architecture allow direct segmentation of high-resolution CBCT images. This approach creates 3D mandibular models in a more time-efficient and consistent way. It is accurate when benchmarked to semi-automatic segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炙热远望发布了新的文献求助10
刚刚
2秒前
4秒前
JamesPei应助王艺欣采纳,获得10
7秒前
聪明夏波发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
11秒前
於紫槐完成签到,获得积分10
12秒前
臻灏发布了新的文献求助10
13秒前
翻个花生完成签到,获得积分10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
14秒前
归尘应助科研通管家采纳,获得30
14秒前
青栀发布了新的文献求助10
15秒前
15秒前
16秒前
浮浮世世发布了新的文献求助10
16秒前
lf发布了新的文献求助10
17秒前
lyc45491314发布了新的文献求助30
17秒前
18秒前
刘梦瑶完成签到,获得积分10
19秒前
科研助理发布了新的文献求助10
19秒前
20秒前
20秒前
23秒前
24秒前
MYFuture应助清爽念柏采纳,获得30
24秒前
火星上的紫萍完成签到,获得积分10
24秒前
25秒前
嘿嘿发布了新的文献求助10
26秒前
26秒前
26秒前
27秒前
27秒前
28秒前
28秒前
29秒前
小石头发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
4th edition, Qualitative Data Analysis with NVivo Jenine Beekhuyzen, Pat Bazeley 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611574
求助须知:如何正确求助?哪些是违规求助? 4695940
关于积分的说明 14889296
捐赠科研通 4726056
什么是DOI,文献DOI怎么找? 2545778
邀请新用户注册赠送积分活动 1510260
关于科研通互助平台的介绍 1473193