Few-Shot Learning with a Strong Teacher

计算机科学 分类器(UML) 人工智能 机器学习 弹丸 一次性 任务(项目管理) 构造(python库) 工程类 机械工程 有机化学 化学 程序设计语言 系统工程
作者
Han-Jia Ye,Lü Ming,De‐Chuan Zhan,Wei‐Lun Chao
出处
期刊:Cornell University - arXiv 被引量:7
标识
DOI:10.48550/arxiv.2107.00197
摘要

Few-shot learning (FSL) aims to generate a classifier using limited labeled examples. Many existing works take the meta-learning approach, constructing a few-shot learner that can learn from few-shot examples to generate a classifier. Typically, the few-shot learner is constructed or meta-trained by sampling multiple few-shot tasks in turn and optimizing the few-shot learner's performance in generating classifiers for those tasks. The performance is measured by how well the resulting classifiers classify the test (i.e., query) examples of those tasks. In this paper, we point out two potential weaknesses of this approach. First, the sampled query examples may not provide sufficient supervision for meta-training the few-shot learner. Second, the effectiveness of meta-learning diminishes sharply with the increasing number of shots. To resolve these issues, we propose a novel meta-training objective for the few-shot learner, which is to encourage the few-shot learner to generate classifiers that perform like strong classifiers. Concretely, we associate each sampled few-shot task with a strong classifier, which is trained with ample labeled examples. The strong classifiers can be seen as the target classifiers that we hope the few-shot learner to generate given few-shot examples, and we use the strong classifiers to supervise the few-shot learner. We present an efficient way to construct the strong classifier, making our proposed objective an easily plug-and-play term to existing meta-learning based FSL methods. We validate our approach, LastShot, in combinations with many representative meta-learning methods. On several benchmark datasets, our approach leads to a notable improvement across a variety of tasks. More importantly, with our approach, meta-learning based FSL methods can outperform non-meta-learning based methods at different numbers of shots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
FashionBoy应助小喵采纳,获得10
4秒前
苏silence发布了新的文献求助10
4秒前
fengzi完成签到 ,获得积分10
6秒前
科研通AI5应助AlisaWu采纳,获得50
6秒前
安详的惜梦应助好好采纳,获得10
6秒前
103921wjk发布了新的文献求助10
7秒前
9秒前
小蘑菇应助刘小花采纳,获得10
10秒前
13秒前
桐桐应助zhouleiwang采纳,获得10
16秒前
赘婿应助绝尘采纳,获得10
17秒前
刘小花完成签到,获得积分20
18秒前
金晓发布了新的文献求助10
22秒前
24秒前
zmnzmnzmn应助科研通管家采纳,获得10
29秒前
朝暮应助科研通管家采纳,获得10
29秒前
29秒前
Owen应助科研通管家采纳,获得10
29秒前
HEIKU应助科研通管家采纳,获得10
29秒前
今后应助科研通管家采纳,获得10
29秒前
隐形曼青应助科研通管家采纳,获得30
29秒前
orixero应助科研通管家采纳,获得30
29秒前
29秒前
HEIKU应助科研通管家采纳,获得10
29秒前
领导范儿应助科研通管家采纳,获得10
29秒前
29秒前
31秒前
绝尘发布了新的文献求助10
35秒前
35秒前
端庄的连碧完成签到 ,获得积分10
35秒前
行走完成签到,获得积分10
36秒前
37秒前
39秒前
bernoulli发布了新的文献求助10
40秒前
852应助能干数据线采纳,获得10
43秒前
44秒前
华仔应助神经蛙采纳,获得10
45秒前
kk发布了新的文献求助10
45秒前
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778901
求助须知:如何正确求助?哪些是违规求助? 3324431
关于积分的说明 10218443
捐赠科研通 3039495
什么是DOI,文献DOI怎么找? 1668204
邀请新用户注册赠送积分活动 798591
科研通“疑难数据库(出版商)”最低求助积分说明 758440