Prediction of Cavitation Performance over the Pump-Jet Propulsor Using Computational Fluid Dynamics and Hybrid Deep Learning Method

推进器 空化 机械 涡流 计算流体力学 雷诺平均Navier-Stokes方程 螺旋桨 喷射(流体) 方位(导航) 流量(数学) 推进 计算机科学 材料科学 海洋工程 物理 工程类 航空航天工程 人工智能
作者
Chengcheng Qiu,Qiaogao Huang,Guang Pan
出处
期刊:Journal of Marine Science and Engineering [Multidisciplinary Digital Publishing Institute]
卷期号:10 (7): 918-918 被引量:6
标识
DOI:10.3390/jmse10070918
摘要

The cavitation performance of an oblique flow field is different from that under a pure axial flow field. This study analyzed the hydrodynamic performance, bearing force, and tip clearance flow field under different rotating speeds and different cavitation numbers in an oblique flow field. Furthermore, this study proposed a hybrid deep learning model CNN-Bi-LSTM to quickly and accurately predict the bearing force of a pump-jet propulsor (PJP), which will solve the problem of time-consuming calculation and consumption of considerable computing resources in traditional computational fluid dynamics. The Shear–Stress–Transport model and Reynolds-averaged Navier–Stokes equations were utilized to procure the training and testing datasets. The training and testing datasets were reasonably divided in the ratio of 7:3. The results show that the propulsion efficiency decreased more obviously under higher rotating speed conditions, with a maximum decrease of up to 13.59%. The small cavitation numbers 1.4721 and high oblique angle significantly impacted the efficiency reduction; the maximum efficiency loss exceeded 20%. Thus, a small cavitation number 1.4721 is extremely detrimental to the propulsion efficiency of the PJP due to the large cavitation area. Moreover, the intensity of the tip clearance vortex continuously increased with the rotating speed. The CNN-Bi-LSTM deep model successfully predicted the phase difference and trend change of the propulsor bearing force under different conditions. The prediction difference was large at the crest and trough of the bearing force, but it is within the acceptable error range.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
还我养乐多应助奥利给采纳,获得20
刚刚
李爱国应助呆呆的猕猴桃采纳,获得10
1秒前
1秒前
ZGAAQj发布了新的文献求助10
1秒前
2秒前
舒适凝荷发布了新的文献求助10
3秒前
3秒前
我是老大应助莫离采纳,获得10
3秒前
圆锥香蕉应助谢紫玲采纳,获得20
3秒前
陈不沉发布了新的文献求助10
3秒前
幸福妙柏发布了新的文献求助10
4秒前
文文武完成签到,获得积分10
5秒前
Ehgnix发布了新的文献求助10
6秒前
传奇3应助liam采纳,获得10
7秒前
天外飞聪完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
11秒前
天外飞聪发布了新的文献求助10
12秒前
耶耶耶完成签到,获得积分10
12秒前
万能图书馆应助zhuang采纳,获得10
13秒前
搜集达人应助王嘉巍采纳,获得10
13秒前
14秒前
完美世界应助maitiandehe采纳,获得10
14秒前
徐旖旎发布了新的文献求助30
15秒前
15秒前
16秒前
谢紫玲完成签到,获得积分10
17秒前
suxin发布了新的文献求助10
17秒前
17秒前
Dado应助hxj采纳,获得10
18秒前
19秒前
SciGPT应助淡水痕采纳,获得10
19秒前
Membranes发布了新的文献求助10
20秒前
fanger发布了新的文献求助50
20秒前
liam发布了新的文献求助10
20秒前
aldehyde应助yeLI采纳,获得10
20秒前
21秒前
22秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4065993
求助须知:如何正确求助?哪些是违规求助? 3604665
关于积分的说明 11448100
捐赠科研通 3327058
什么是DOI,文献DOI怎么找? 1829019
邀请新用户注册赠送积分活动 899099
科研通“疑难数据库(出版商)”最低求助积分说明 819437