A systematically chromosomally engineered Escherichia coli efficiently produces butanol

异源的 大肠杆菌 代谢工程 丁醇 合成生物学 基因 异源表达 诱导剂 拉伤 遗传学 计算生物学 生物 重组DNA 生物化学 解剖 乙醇
作者
Hongjun Dong,Chunhua Zhao,Tianrui Zhang,Huawei Zhu,Lin Zhao,Wenwen Tao,Yanping Zhang,Yin Li
出处
期刊:Metabolic Engineering [Elsevier BV]
卷期号:44: 284-292 被引量:56
标识
DOI:10.1016/j.ymben.2017.10.014
摘要

Biotechnological production of butanol in heterologous hosts has recently attracted many interests. Of the heterologous hosts investigated to date, engineered Escherichia coli has shown a superior butanol yield than the natural butanol-producing clostridial strains. However, all reported butanol-producing E. coli strains contain vectors and inducible promoters, which means antibiotics and inducers are required in the fermentation. The aim of this study was to develop a completely chromosomally engineered E. coli strain capable of producing butanol efficiently in the absence of vectors, antibiotics, and inducers. The challenges are the expression strength of chromosomally engineered genes under constitutive promoters is much weaker than the vector engineered genes under inducible promoters. To address these challenges, the butanol pathway was engineered into the chromosome in the first place, then the host and the butanol pathway was iteratively engineered through rational and non-rational strategies to develop an efficient butanol producer where the heterologous butanol pathway fits the host well. Finally, a systematically chromosomally engineered E. coli strain EB243, in which 33 native genes were deleted and 5 heterologous genes were introduced, was developed. Strain EB243 could produce 20g/L butanol with a yield of 34% (w/w, 83% of theoretical yield) in batch fermentation without any antibiotics and inducers, thus showed great potential for industrial application. This work also demonstrated a procedure on how to integrate the existing knowledge to engineer a strain with industrial application potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今夜有雨完成签到 ,获得积分10
3秒前
稳重的邑完成签到,获得积分20
4秒前
科研通AI5应助11采纳,获得10
4秒前
Doctor_jie完成签到 ,获得积分10
7秒前
童年的回忆klwqqt完成签到,获得积分10
8秒前
小王同学完成签到,获得积分10
10秒前
等待纸鹤完成签到,获得积分10
11秒前
科研通AI2S应助liuhuo采纳,获得10
11秒前
愉快的花卷完成签到 ,获得积分10
11秒前
12秒前
科研通AI5应助舒心的半仙采纳,获得10
13秒前
天凉王破完成签到 ,获得积分10
14秒前
lyric完成签到,获得积分10
14秒前
天天快乐应助猪猪hero采纳,获得10
15秒前
xzy998应助通通通采纳,获得10
16秒前
稳重的邑发布了新的文献求助10
17秒前
benj完成签到,获得积分10
18秒前
18秒前
小星星发布了新的文献求助10
18秒前
tyughi完成签到,获得积分10
19秒前
20秒前
21秒前
21秒前
hume发布了新的文献求助10
21秒前
彩色亿先完成签到 ,获得积分10
22秒前
guochang完成签到,获得积分10
24秒前
十一苗完成签到 ,获得积分10
25秒前
豆浆烩面发布了新的文献求助10
26秒前
甜美紫翠发布了新的文献求助10
27秒前
xr完成签到 ,获得积分10
27秒前
hume完成签到,获得积分10
29秒前
香蕉觅云应助小星星采纳,获得10
30秒前
34秒前
34秒前
豆浆烩面完成签到,获得积分10
34秒前
小星星完成签到,获得积分10
36秒前
37秒前
37秒前
科研通AI5应助徐若楠采纳,获得10
37秒前
11111完成签到 ,获得积分10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777883
求助须知:如何正确求助?哪些是违规求助? 3323387
关于积分的说明 10214323
捐赠科研通 3038627
什么是DOI,文献DOI怎么找? 1667567
邀请新用户注册赠送积分活动 798195
科研通“疑难数据库(出版商)”最低求助积分说明 758304