甲脒
钝化
材料科学
堆栈(抽象数据类型)
钙钛矿(结构)
能量转换效率
沉积(地质)
化学气相沉积
卤化物
化学工程
化学浴沉积
图层(电子)
无机化学
制作
光电子学
带隙
纳米技术
化学
病理
古生物学
工程类
生物
医学
程序设计语言
替代医学
计算机科学
沉积物
作者
Guoqing Tong,Huan Li,Guopeng Li,Ting Zhang,Chengdong Li,Linwei Yu,Jun Xu,Yang Jiang,Yi Shi,Kunji Chen
出处
期刊:Nano Energy
[Elsevier BV]
日期:2018-04-06
卷期号:48: 536-542
被引量:74
标识
DOI:10.1016/j.nanoen.2018.04.012
摘要
Mixed cation halide perovskite solar cells (PSCs), in a formula of ABX3 where A is a mixture of formamidinium (FA) or cesium (Cs) cations, represent a promising new architecture to achieve largely improved stability and higher power conversion efficiency (PCE). While all these mixed-cation PSCs were synthesized via a solution method, we here propose and demonstrate a precisely tunable stack sequence physical-chemical vapor deposition (SS-PCVD) approach to prepare a mixed-cation absorber in CsBr-doped hybrid organic perovskite, which features a beneficial gradient bandgap profile to enable an improvement of PCE from 11.69% in pure FAPbI3 to 18.22% in mixed-cation PSCs. Remarkably, an excellent stability in ambient exposure for 60 days has been achieved by a proper control of the CsBr cation incorporation and interface passivation. This new approach indicates a simple, precisely tunable and low cost fabrication strategy to implement high performance and scalable mixed-cation halide perovskite solar cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI