Strategies for Efficient Lead Structure Discovery from Natural Products

虚拟筛选 药物发现 药效团 生化工程 计算机科学 计算生物学 数据科学 管理科学 人工智能 风险分析(工程) 生物信息学 生物 工程类 业务
作者
Judith M. Rollinger,Thierry Langer,Hermann Stuppner
出处
期刊:Current Medicinal Chemistry [Bentham Science Publishers]
卷期号:13 (13): 1491-1507 被引量:92
标识
DOI:10.2174/092986706777442075
摘要

This investigation aims to evaluate strategies for an efficient selection of bioactive compounds from the multitude and biodiversity of the plant kingdom. Statistics prove natural products (NPs) as a source leading most consistently to successful development of new drugs. However, there are several reasons why the interest in finding bioactive NPs has generally declined at several major pharmaceutical companies. Their substantial argument is that the research in this field is time-consuming, highly complex and ineffective. A more rational and economic search for new lead structures from nature must therefore be a priority in order to overcome these problems. In this paper, different strategies are described to exploit the molecular diversity of bioactive secondary metabolites, namely classical pharmacognostic approaches and computational methods. The latter include various data mining tools, like virtual screening filtering experiments using pharmacophore models, docking studies, and neural networks, which help to establish a relationship between chemical structure and biological activity. The strengths and weaknesses of these methods will be shown in this review. Focusing on selected targets within the arachidonic acid cascade (phospholipase A(2), 5-lipoxygenase, cyclooxygenase-1 and -2), several studies of successful discoveries in the field of anti-inflammatory NPs were scrutinized for the applied strategies. Both the compilation of relevant published data and recent studies supported by our own research clearly demonstrate the benefits of the synergistic effect of a hybridization of these strategies for an effective drug discovery from natural ingredients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助不知道采纳,获得10
刚刚
bcliu9920完成签到 ,获得积分10
2秒前
Orange应助persist采纳,获得10
2秒前
2秒前
都是发布了新的文献求助10
7秒前
10秒前
11秒前
persist发布了新的文献求助10
13秒前
13秒前
16秒前
syr完成签到 ,获得积分0
16秒前
17秒前
17秒前
17秒前
不知道发布了新的文献求助10
17秒前
18秒前
18秒前
20秒前
rain发布了新的文献求助10
20秒前
靓丽谷南发布了新的文献求助10
22秒前
lyy发布了新的文献求助10
23秒前
24秒前
偷乐发布了新的文献求助10
25秒前
26秒前
26秒前
27秒前
29秒前
30秒前
30秒前
rain完成签到,获得积分10
30秒前
Grace159完成签到 ,获得积分10
30秒前
lhy发布了新的文献求助10
34秒前
34秒前
22小研究员应助SLJK采纳,获得10
34秒前
35秒前
wiv07完成签到 ,获得积分10
37秒前
38秒前
YIQUN发布了新的文献求助10
42秒前
十一玮完成签到,获得积分10
43秒前
司徒文青发布了新的文献求助30
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778351
求助须知:如何正确求助?哪些是违规求助? 3323953
关于积分的说明 10216860
捐赠科研通 3039279
什么是DOI,文献DOI怎么找? 1667919
邀请新用户注册赠送积分活动 798427
科研通“疑难数据库(出版商)”最低求助积分说明 758385