高光谱成像
复合数
上下文图像分类
模式识别(心理学)
计算机科学
人工智能
核(代数)
图像(数学)
遥感
计算机视觉
地质学
数学
算法
组合数学
作者
Gustau Camps-Valls,L. Gomez-Chova,Jordi Muñoz-Marí,Joan Vila-Francés,Javier Calpe-Maravilla
标识
DOI:10.1109/lgrs.2005.857031
摘要
This letter presents a framework of composite kernel machines for enhanced classification of hyperspectral images. This novel method exploits the properties of Mercer's kernels to construct a family of composite kernels that easily combine spatial and spectral information. This framework of composite kernels demonstrates: 1) enhanced classification accuracy as compared to traditional approaches that take into account the spectral information only: 2) flexibility to balance between the spatial and spectral information in the classifier; and 3) computational efficiency. In addition, the proposed family of kernel classifiers opens a wide field for future developments in which spatial and spectral information can be easily integrated.
科研通智能强力驱动
Strongly Powered by AbleSci AI