Intelligent random noise modeling by the improved variational autoencoding method and its application to data augmentation

计算机科学 噪音(视频) 高斯噪声 降噪 卷积神经网络 随机噪声 合成数据 人工智能 人工神经网络 模式识别(心理学) 算法 图像(数学)
作者
Qiankun Feng,Yue Li,Hongzhou Wang
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (1): T19-T31 被引量:14
标识
DOI:10.1190/geo2019-0815.1
摘要

Deep-learning methods facilitate the development of seismic data processing methods; however, they also offer some challenges. The primary challenges are the lack of labeled samples for training, due to heterogeneity in seismic data, expensive acquisition apparatus, and data confidentiality. These problems limit the acquisition of high-quality training data. To solve this problem, we have developed variational autoencoding (VAE) to generate synthetic noise for data augmentation; however, the simplified Kullback-Leibler (KL) distance definition and parameter learning result in the outputs of the original VAE being blurry. To optimize VAE for simulating random desert noise and improve its simulation capability, here we have developed an improved VAE based on KL redefinition and learning parameter replacement. Specifically, we (1) build a training set containing desert random noise samples, (2) redefine the KL distance calculated between two Gaussian mixture densities (rather than two simple Gaussians) because the KL distance plays an important role in the learning accuracy of VAE, and (3) use [Formula: see text] rather than [Formula: see text] to improve the learning efficiency. Statistical analysis indicates that the simulated random noise is statistically indistinguishable from real noise, indicating that our improved VAE is suitable for noise modeling. We also trained a denoising convolutional neural network (DnCNN) using the simulated noise. Data augmentation conducted using the simulated noise improved the effect of DnCNN, proving that our method contributes to data augmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
agnessh完成签到,获得积分10
7秒前
Zpiao发布了新的文献求助20
14秒前
pluto应助科研小白采纳,获得20
15秒前
19秒前
夏xia完成签到,获得积分10
21秒前
21秒前
22秒前
木染发布了新的文献求助10
22秒前
yang完成签到,获得积分10
23秒前
猪猪女孩发布了新的文献求助10
26秒前
幽默的月光完成签到,获得积分10
27秒前
汪爷爷完成签到,获得积分10
28秒前
28秒前
恐龙妹妹完成签到 ,获得积分10
31秒前
Django关注了科研通微信公众号
31秒前
AlexanderChen发布了新的文献求助10
32秒前
fangzhang发布了新的文献求助10
33秒前
莫之白完成签到,获得积分10
34秒前
曾经的半山完成签到 ,获得积分10
35秒前
33完成签到,获得积分10
36秒前
Akim应助猪猪女孩采纳,获得10
36秒前
37秒前
40秒前
华仔应助二东采纳,获得10
42秒前
zzj-zjut发布了新的文献求助10
43秒前
z11发布了新的文献求助10
43秒前
所所应助Jimmy采纳,获得10
44秒前
一帆风顺完成签到,获得积分10
45秒前
kid1412完成签到 ,获得积分10
45秒前
48秒前
48秒前
可爱的函函应助木染采纳,获得10
53秒前
科研通AI5应助zzj-zjut采纳,获得10
53秒前
54秒前
虎虎虎发布了新的文献求助10
54秒前
二东发布了新的文献求助10
54秒前
55秒前
56秒前
57秒前
科研通AI5应助Zpiao采纳,获得10
57秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776990
求助须知:如何正确求助?哪些是违规求助? 3322387
关于积分的说明 10210034
捐赠科研通 3037721
什么是DOI,文献DOI怎么找? 1666843
邀请新用户注册赠送积分活动 797700
科研通“疑难数据库(出版商)”最低求助积分说明 758012