已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Challenges of Explaining the Behavior of Black-Box AI Systems

计算机科学 杠杆(统计) 黑匣子 人工智能 过程(计算) 对抗制 人工智能应用 数据科学 操作系统
作者
Aleksandre Asatiani,Pekka Malo,Per Rådberg Nagbøl,Esko Penttinen,Tapani Rinta-Kahila,Antti Salovaara
出处
期刊:Mis Quarterly Executive [Indiana University Press]
卷期号:: 259-278 被引量:66
标识
DOI:10.17705/2msqe.00037
摘要

Organizations Need to Be Able to Explain the Behavior of Black-Box AI Systems 12Huge increases in computing capacity and data volumes have spurred the development of applications that use artificial intelligence (AI), a technology that is being implemented for increasingly complex tasks, from playing Go to screening for cancer.Private and public businesses and organizations are deploying AI applications to process vast quantities of data and support decision making.These applications can help to reduce the costs of providing various services, deliver new services and improve the safety and reliability of operations.However, unlike conventional information systems, the algorithms embedded in AI applications can be "black boxes."Previously, those who developed applications could completely explain how an algorithm worked.Given an input, they could tell you what the output would be and why, because the systems applied human-made rules.That is no longer true for AI-based applications.The application creates internal structures that determine outputs, but these are inscrutable to outside observers, and even the programmers cannot tell you why a specific output was generated.Many AI systems leverage machine learning, 1 Hind Benbya is the accepting senior editor for this article.2 The authors thank Hind Benbya and the members of the review team for their insightful feedback that has greatly improved the

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhhh完成签到 ,获得积分10
3秒前
zorro3574发布了新的文献求助10
7秒前
7秒前
隐形曼青应助朴素的曼易采纳,获得10
8秒前
qqq完成签到,获得积分10
8秒前
Menand完成签到,获得积分10
10秒前
peekaboo完成签到 ,获得积分10
14秒前
16秒前
16秒前
17秒前
18秒前
18秒前
18秒前
18秒前
19秒前
19秒前
20秒前
21秒前
21秒前
22秒前
23秒前
23秒前
23秒前
23秒前
23秒前
23秒前
23秒前
典雅夜安完成签到,获得积分10
27秒前
英姑应助美丽的依琴采纳,获得10
28秒前
28秒前
潇洒书琴完成签到 ,获得积分10
28秒前
天天都在干饭完成签到,获得积分10
29秒前
29秒前
彭于晏应助xuxu采纳,获得10
31秒前
阿哲完成签到 ,获得积分10
32秒前
成功人士发布了新的文献求助10
34秒前
朱广能发布了新的文献求助10
34秒前
充电宝应助miaomiao采纳,获得10
35秒前
36秒前
Tiamo完成签到,获得积分10
36秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830364
求助须知:如何正确求助?哪些是违规求助? 3372779
关于积分的说明 10475071
捐赠科研通 3092507
什么是DOI,文献DOI怎么找? 1702105
邀请新用户注册赠送积分活动 818797
科研通“疑难数据库(出版商)”最低求助积分说明 771087