Missing Data in Clinical Research: A Tutorial on Multiple Imputation

缺少数据 插补(统计学) 统计 医学 回归分析 样本量测定 置信区间 数据挖掘 计算机科学 数学
作者
Peter C. Austin,Ian R. White,Douglas S. Lee,Stef van Buuren
出处
期刊:Canadian Journal of Cardiology [Elsevier]
卷期号:37 (9): 1322-1331 被引量:855
标识
DOI:10.1016/j.cjca.2020.11.010
摘要

Missing data is a common occurrence in clinical research. Missing data occurs when the value of the variables of interest are not measured or recorded for all subjects in the sample. Common approaches to addressing the presence of missing data include complete-case analyses, where subjects with missing data are excluded, and mean-value imputation, where missing values are replaced with the mean value of that variable in those subjects for whom it is not missing. However, in many settings, these approaches can lead to biased estimates of statistics (eg, of regression coefficients) and/or confidence intervals that are artificially narrow. Multiple imputation (MI) is a popular approach for addressing the presence of missing data. With MI, multiple plausible values of a given variable are imputed or filled in for each subject who has missing data for that variable. This results in the creation of multiple completed data sets. Identical statistical analyses are conducted in each of these complete data sets and the results are pooled across complete data sets. We provide an introduction to MI and discuss issues in its implementation, including developing the imputation model, how many imputed data sets to create, and addressing derived variables. We illustrate the application of MI through an analysis of data on patients hospitalised with heart failure. We focus on developing a model to estimate the probability of 1-year mortality in the presence of missing data. Statistical software code for conducting MI in R, SAS, and Stata are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林间月发布了新的文献求助10
刚刚
1秒前
你的风筝完成签到,获得积分0
2秒前
宋杓完成签到,获得积分10
2秒前
溜溜溜溜溜完成签到,获得积分10
2秒前
2秒前
mmingyu完成签到 ,获得积分10
3秒前
3秒前
3秒前
风v聆听v遇见完成签到,获得积分10
3秒前
球球尧伞耳完成签到,获得积分10
4秒前
胡桃完成签到 ,获得积分10
4秒前
生动思远发布了新的文献求助10
4秒前
科隆龙完成签到,获得积分10
5秒前
FashionBoy应助江江想毕业采纳,获得10
5秒前
5秒前
LINYAN关注了科研通微信公众号
5秒前
Oliver完成签到,获得积分10
5秒前
5秒前
7秒前
啊懂发布了新的文献求助10
7秒前
人工智能小配方完成签到,获得积分10
8秒前
停停走走发布了新的文献求助10
8秒前
fourwoods完成签到,获得积分10
8秒前
8秒前
bird0912完成签到,获得积分10
8秒前
9秒前
9秒前
学术黄金完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
xqxqxqxqxqx发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
以恒之心发布了新的文献求助10
12秒前
Pepsi发布了新的文献求助10
12秒前
白白发布了新的文献求助10
12秒前
科研小白完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630760
求助须知:如何正确求助?哪些是违规求助? 4723579
关于积分的说明 14975400
捐赠科研通 4788978
什么是DOI,文献DOI怎么找? 2557322
邀请新用户注册赠送积分活动 1518082
关于科研通互助平台的介绍 1478681