Semi-supervised learned sinogram restoration network for low-dose CT image reconstruction

迭代重建 人工智能 计算机科学 模式识别(心理学) 深度学习 监督学习 特征(语言学) 无监督学习 人工神经网络 语言学 哲学
作者
Mingqiang Meng,Sui Li,Lisha Yao,Danyang Li,Manman Zhu,Qi Gao,Qi Xie,Qian Zhao,Zhaoying Bian,Jing Huang,Deyu Meng,Dong Zeng,Jianhua Ma,Pengwei Wu
出处
期刊:Medical Imaging 2018: Physics of Medical Imaging 卷期号:: 11-11 被引量:16
标识
DOI:10.1117/12.2548985
摘要

With the development of deep learning (DL), many deep learning (DL) based algorithms have been widely used in the low-dose CT imaging and achieved promising reconstruction performance. However, most DL-based algorithms need to pre-collect a large set of image pairs (low-dose/high-dose image pairs) and trains networks in a supervised end-to-end manner. Actually, it is not feasible in clinical to obtain such a large amount of paired training data, especially for high-dose ones. Therefore, in this work, we present a semi-supervised learned sinogram restoration network (SLSR-Net) for low-dose CT image reconstruction. The presented SLSR-Net consists of supervised sub-network and unsupervised sub-network. Specifically, different from the traditional supervised DL networks which only use low-dose/high-dose sinogram pairs, the presented SLSR-Net method is capable of feeding only a few supervised sinogram pairs and massive unsupervised low-dose sinograms into the network training procedure. The supervised pairs are used to capture critical features (i.e., noise distribution, and tissue characteristics) latent in a supervised way and the unsupervised sub-network efficiently learns these features using a conventional weighted least-squares model with a regularization term. Moreover, another contribution of the presented SLSR-Net method is to adaptively transfer learned feature distribution from supervised subnetwork with the paired sinograms to unsupervised sub-network with unlabeled low-dose sinograms to obtain high-fidelity sinogram with a Kullback-Leibler divergence. Finally, the filtered backprojection algorithm is used to reconstruct CT images from the obtained sinograms. Real patient datasets are used to evaluate the performance of the presented SLSR-Net method and the corresponding experimental results show that compared with the traditional supervised learning method, the presented SLSR-Net method achieves competitive performance in terms of noise reduction and structure preservation in low-dose CT imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲜榨白开水完成签到,获得积分10
刚刚
善良身影完成签到,获得积分10
刚刚
1秒前
尊敬凝荷发布了新的文献求助10
1秒前
Fandh完成签到,获得积分20
1秒前
orangel发布了新的文献求助10
2秒前
2秒前
3秒前
yanxueyi完成签到 ,获得积分10
4秒前
小兔叽完成签到,获得积分10
4秒前
yzl完成签到 ,获得积分10
4秒前
4秒前
雪碧呀完成签到,获得积分10
5秒前
julian190完成签到,获得积分10
5秒前
TT完成签到,获得积分10
6秒前
逸风望完成签到,获得积分10
6秒前
CipherSage应助刘瑶采纳,获得30
7秒前
莫道桑榆完成签到,获得积分10
8秒前
Yancy应助orangel采纳,获得10
8秒前
8秒前
9秒前
9秒前
11秒前
爆炒大栗子完成签到,获得积分10
11秒前
Dxy-TOFA完成签到,获得积分10
11秒前
11秒前
李爱国应助合适小刺猬采纳,获得10
11秒前
11秒前
123456完成签到,获得积分10
12秒前
丘比特应助云上人采纳,获得10
13秒前
nemo711完成签到,获得积分10
13秒前
科目三应助斯文的青丝采纳,获得10
14秒前
JIE完成签到,获得积分10
14秒前
吹吹晚风发布了新的文献求助10
15秒前
15秒前
我爱科研完成签到 ,获得积分10
15秒前
16秒前
小李完成签到,获得积分20
16秒前
jjlyy完成签到,获得积分10
17秒前
17秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816267
求助须知:如何正确求助?哪些是违规求助? 3359734
关于积分的说明 10404496
捐赠科研通 3077608
什么是DOI,文献DOI怎么找? 1690330
邀请新用户注册赠送积分活动 813741
科研通“疑难数据库(出版商)”最低求助积分说明 767801