亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation algorithms

遥感 时间序列 变更检测 平滑的 规范化(社会学) 像素 算法 分割 计算机科学 计算机视觉 人工智能 地理 机器学习 人类学 社会学
作者
Robert E. Kennedy,Zhiqiang Yang,Warren B. Cohen
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:114 (12): 2897-2910 被引量:1617
标识
DOI:10.1016/j.rse.2010.07.008
摘要

We introduce and test LandTrendr (Landsat-based detection of Trends in Disturbance and Recovery), a new approach to extract spectral trajectories of land surface change from yearly Landsat time-series stacks (LTS). The method brings together two themes in time-series analysis of LTS: capture of short-duration events and smoothing of long-term trends. Our strategy is founded on the recognition that change is not simply a contrast between conditions at two points in time, but rather a continual process operating at both fast and slow rates on landscapes. This concept requires both new algorithms to extract change and new interpretation tools to validate those algorithms. The challenge is to resolve salient features of the time series while eliminating noise introduced by ephemeral changes in illumination, phenology, atmospheric condition, and geometric registration. In the LandTrendr approach, we use relative radiometric normalization and simple cloud screening rules to create on-the-fly mosaics of multiple images per year, and extract temporal trajectories of spectral data on a pixel-by-pixel basis. We then apply temporal segmentation strategies with both regression-based and point-to-point fitting of spectral indices as a function of time, allowing capture of both slowly-evolving processes, such as regrowth, and abrupt events, such as forest harvest. Because any temporal trajectory pattern is allowable, we use control parameters and threshold-based filtering to reduce the role of false positive detections. No suitable reference data are available to assess the role of these control parameters or to test overall algorithm performance. Therefore, we also developed a companion interpretation approach founded on the same conceptual framework of capturing both long and short-duration processes, and developed a software tool to apply this concept to expert interpretation and segmentation of spectral trajectories (TimeSync, described in a companion paper by Cohen et al., 2010). These data were used as a truth set against which to evaluate the behavior of the LandTrendr algorithms applied to three spectral indices. We applied the LandTrendr algorithms to several hundred points across western Oregon and Washington (U.S.A.). Because of the diversity of potential outputs from the LTS data, we evaluated algorithm performance against summary metrics for disturbance, recovery, and stability, both for capture of events and longer-duration processes. Despite the apparent complexity of parameters, our results suggest a simple grouping of parameters along a single axis that balances the detection of abrupt events with capture of long-duration trends. Overall algorithm performance was good, capturing a wide range of disturbance and recovery phenomena, even when evaluated against a truth set that contained new targets (recovery and stability) with much subtler thresholds of change than available from prior validation datasets. Temporal segmentation of the archive appears to be a feasible and robust means of increasing information extraction from the Landsat archive.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li发布了新的文献求助10
2秒前
拼搏姒发布了新的文献求助10
9秒前
顾矜应助AAA采纳,获得10
13秒前
Anoxra完成签到 ,获得积分10
15秒前
lwm不想看文献完成签到 ,获得积分10
15秒前
summer完成签到,获得积分10
22秒前
evermore发布了新的文献求助10
23秒前
研友_5Y9Z75完成签到 ,获得积分0
26秒前
NexusExplorer应助susu采纳,获得30
33秒前
41秒前
梅荣庆完成签到 ,获得积分10
42秒前
evermore发布了新的文献求助10
43秒前
Jason完成签到 ,获得积分10
44秒前
执着的爆米花完成签到,获得积分10
45秒前
feng发布了新的文献求助10
46秒前
完美世界应助Li采纳,获得10
47秒前
paradox完成签到 ,获得积分10
52秒前
追寻夜香完成签到 ,获得积分10
53秒前
54秒前
科目三应助wang采纳,获得10
57秒前
鲤鱼山人完成签到 ,获得积分10
58秒前
可爱的函函应助azure采纳,获得10
1分钟前
guan完成签到,获得积分10
1分钟前
evermore发布了新的文献求助10
1分钟前
Li发布了新的文献求助10
1分钟前
1分钟前
124发布了新的文献求助10
1分钟前
bkagyin应助酒颜采纳,获得10
1分钟前
1分钟前
慧木发布了新的文献求助10
1分钟前
单薄绿竹完成签到,获得积分10
1分钟前
1分钟前
abc完成签到 ,获得积分0
1分钟前
azure发布了新的文献求助10
1分钟前
Jonathan完成签到,获得积分10
1分钟前
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
1分钟前
wang发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515585
求助须知:如何正确求助?哪些是违规求助? 4608975
关于积分的说明 14514228
捐赠科研通 4545476
什么是DOI,文献DOI怎么找? 2490550
邀请新用户注册赠送积分活动 1472489
关于科研通互助平台的介绍 1444181