亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation algorithms

遥感 时间序列 变更检测 平滑的 规范化(社会学) 像素 算法 分割 计算机科学 计算机视觉 人工智能 地理 机器学习 人类学 社会学
作者
Robert E. Kennedy,Zhiqiang Yang,Warren B. Cohen
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:114 (12): 2897-2910 被引量:1538
标识
DOI:10.1016/j.rse.2010.07.008
摘要

We introduce and test LandTrendr (Landsat-based detection of Trends in Disturbance and Recovery), a new approach to extract spectral trajectories of land surface change from yearly Landsat time-series stacks (LTS). The method brings together two themes in time-series analysis of LTS: capture of short-duration events and smoothing of long-term trends. Our strategy is founded on the recognition that change is not simply a contrast between conditions at two points in time, but rather a continual process operating at both fast and slow rates on landscapes. This concept requires both new algorithms to extract change and new interpretation tools to validate those algorithms. The challenge is to resolve salient features of the time series while eliminating noise introduced by ephemeral changes in illumination, phenology, atmospheric condition, and geometric registration. In the LandTrendr approach, we use relative radiometric normalization and simple cloud screening rules to create on-the-fly mosaics of multiple images per year, and extract temporal trajectories of spectral data on a pixel-by-pixel basis. We then apply temporal segmentation strategies with both regression-based and point-to-point fitting of spectral indices as a function of time, allowing capture of both slowly-evolving processes, such as regrowth, and abrupt events, such as forest harvest. Because any temporal trajectory pattern is allowable, we use control parameters and threshold-based filtering to reduce the role of false positive detections. No suitable reference data are available to assess the role of these control parameters or to test overall algorithm performance. Therefore, we also developed a companion interpretation approach founded on the same conceptual framework of capturing both long and short-duration processes, and developed a software tool to apply this concept to expert interpretation and segmentation of spectral trajectories (TimeSync, described in a companion paper by Cohen et al., 2010). These data were used as a truth set against which to evaluate the behavior of the LandTrendr algorithms applied to three spectral indices. We applied the LandTrendr algorithms to several hundred points across western Oregon and Washington (U.S.A.). Because of the diversity of potential outputs from the LTS data, we evaluated algorithm performance against summary metrics for disturbance, recovery, and stability, both for capture of events and longer-duration processes. Despite the apparent complexity of parameters, our results suggest a simple grouping of parameters along a single axis that balances the detection of abrupt events with capture of long-duration trends. Overall algorithm performance was good, capturing a wide range of disturbance and recovery phenomena, even when evaluated against a truth set that contained new targets (recovery and stability) with much subtler thresholds of change than available from prior validation datasets. Temporal segmentation of the archive appears to be a feasible and robust means of increasing information extraction from the Landsat archive.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owllight完成签到,获得积分20
8秒前
George完成签到,获得积分10
21秒前
汉堡包应助hqc采纳,获得10
21秒前
30秒前
hqc发布了新的文献求助10
35秒前
酷波er应助科研通管家采纳,获得10
47秒前
碗碗豆喵完成签到 ,获得积分10
56秒前
葱饼完成签到 ,获得积分10
1分钟前
点心完成签到,获得积分10
1分钟前
GRATE完成签到 ,获得积分10
1分钟前
科研通AI2S应助expoem采纳,获得10
1分钟前
科研搬运工完成签到,获得积分10
2分钟前
yuiip完成签到 ,获得积分10
2分钟前
冬去春来完成签到 ,获得积分10
3分钟前
实验品626完成签到 ,获得积分10
4分钟前
在水一方应助科研通管家采纳,获得10
4分钟前
科研通AI5应助krajicek采纳,获得10
5分钟前
Jasper应助在努力了采纳,获得30
5分钟前
5分钟前
Waymaker发布了新的文献求助10
5分钟前
无花果应助Waymaker采纳,获得10
5分钟前
Waymaker完成签到 ,获得积分10
6分钟前
6分钟前
在努力了发布了新的文献求助30
6分钟前
liwang9301完成签到,获得积分10
6分钟前
科目三应助科研通管家采纳,获得10
6分钟前
abcdefg完成签到 ,获得积分10
7分钟前
怡然念之完成签到 ,获得积分10
7分钟前
11完成签到,获得积分10
8分钟前
Orange应助也曦采纳,获得10
8分钟前
8分钟前
也曦完成签到,获得积分10
9分钟前
冬菊完成签到 ,获得积分10
9分钟前
科研通AI5应助7NEFZ采纳,获得10
9分钟前
是木易呀完成签到,获得积分10
10分钟前
Lucas应助科研通管家采纳,获得10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
11分钟前
11分钟前
7NEFZ发布了新的文献求助10
11分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244188
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759508