Predicting the progression of Parkinson's disease using conventional MRI and machine learning: An application of radiomic biomarkers in whole‐brain white matter

无线电技术 白质 人工智能 评定量表 帕金森病 神经影像学 机器学习 医学 磁共振成像 疾病 心理学 计算机科学 内科学 放射科 精神科 发展心理学
作者
Zhenyu Shu,Sijia Cui,Xiao Wu,Yuyun Xu,Peiyu Huang,Peipei Pang,Minming Zhang
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:85 (3): 1611-1624 被引量:48
标识
DOI:10.1002/mrm.28522
摘要

Purpose This study aimed to develop and validate a radiomics model based on whole‐brain white matter and clinical features to predict the progression of Parkinson disease (PD). Methods PD patient data from the Parkinson's Progress Markers Initiative (PPMI) database was evaluated. Seventy‐two PD patients with disease progression, as measured by the Hoehn‐Yahr Scale (HYS) (stage 1‐5), and 72 PD patients with stable PD were matched by sex, age, and category of HYS and included in the current study. Each individual’s T 1 ‐weighted MRI scans at the baseline timepoint were segmented to isolate whole‐brain white matter for radiomics feature extraction. The total dataset was divided into a training and test set according to subject serial number. The size of the training dataset was reduced using the maximum relevance minimum redundancy (mRMR) algorithm to construct a radiomics signature using machine learning. Finally, a joint model was constructed by incorporating the radiomics signature and clinical progression scores. The test data were then used to validate the prediction models, which were evaluated based on discrimination, calibration, and clinical utility. Results Based on the overall data, the areas under curve (AUCs) of the joint model, signature and Unified Parkinson Disease Rating Scale III PD rating score were 0.836, 0.795, and 0.550, respectively. Furthermore, the sensitivities were 0.805, 0.875, and 0.292, respectively, and the specificities were 0.722, 0.697, and 0.861, respectively. In addition, the predictive accuracy of the model was 0.827, the sensitivity was 0.829 and the specificity was 0.702 for stage‐1 PD. For stage‐2 PD, the predictive accuracy of the model was 0.854, the sensitivity was 0.960, and the specificity was 0.600. Conclusion Our results provide evidence that conventional structural MRI can predict the progression of PD. This work also supports the use of a simple radiomics signature built from whole‐brain white matter features as a useful tool for the assessment and monitoring of PD progression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助荼白采纳,获得50
1秒前
2秒前
cdercder应助qikkk采纳,获得30
2秒前
huke完成签到 ,获得积分10
3秒前
4秒前
香蕉觅云应助rain123采纳,获得10
5秒前
子车茗应助梨花雨凉1993采纳,获得30
7秒前
巴斯光年完成签到,获得积分20
13秒前
传奇3应助hullu采纳,获得10
13秒前
serendipity完成签到 ,获得积分10
14秒前
14秒前
15秒前
15秒前
充电宝应助nanjiren采纳,获得10
15秒前
15秒前
lone623完成签到 ,获得积分10
17秒前
南笺完成签到 ,获得积分10
17秒前
ILS完成签到 ,获得积分10
18秒前
上官若男应助十三采纳,获得10
18秒前
巴斯光年发布了新的文献求助10
18秒前
18秒前
婷婷小笑应助马以茄采纳,获得10
20秒前
科研通AI2S应助zoe采纳,获得10
22秒前
Dicy发布了新的文献求助10
22秒前
时尚的梦曼完成签到,获得积分10
22秒前
小五完成签到 ,获得积分10
23秒前
a11835发布了新的文献求助10
23秒前
hu发布了新的文献求助10
24秒前
隐形曼青应助呆啊采纳,获得20
24秒前
26秒前
虚心完成签到 ,获得积分10
26秒前
科研通AI5应助Dicy采纳,获得10
29秒前
希望天下0贩的0应助a11835采纳,获得10
30秒前
30秒前
32秒前
32秒前
可爱的函函应助hu采纳,获得10
32秒前
憨厚的窝瓜完成签到 ,获得积分10
32秒前
34秒前
Lucas应助Alandia采纳,获得10
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792198
求助须知:如何正确求助?哪些是违规求助? 3336436
关于积分的说明 10281070
捐赠科研通 3053210
什么是DOI,文献DOI怎么找? 1675507
邀请新用户注册赠送积分活动 803469
科研通“疑难数据库(出版商)”最低求助积分说明 761429