亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of Adsorption Energies for Chemical Species on Metal Catalyst Surfaces Using Machine Learning

吸附 化学 催化作用 化学工程 金属 材料科学 物理化学 工程类 有机化学
作者
Asif Chowdhury,Wenqiang Yang,Eric A. Walker,Osman Mamun,Andreas Heyden,Gabriel Terejanu
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:122 (49): 28142-28150 被引量:89
标识
DOI:10.1021/acs.jpcc.8b09284
摘要

Computational catalyst screening has the potential to significantly accelerate heterogeneous catalyst discovery. Typically, this involves developing microkinetic reactor models that are based on parameters obtained from density functional theory and transition-state theory. To reduce the large computational cost involved in computing various adsorption and transition-state energies of all possible surface states on a large number of catalyst models, linear scaling relations for surface intermediates and transition states have been developed that only depend on a few, typically one or two descriptors, such as the carbon atom adsorption energy. As a result, only the descriptor values have to be computed for various active site models to generate volcano curves in activity or selectivity. Unfortunately, for more complex chemistries the predictability of linear scaling relations is unknown. Also, the selection of descriptors is essentially a trial and error process. Here, using a database of adsorption energies of the surface species involved in the decarboxylation and decarbonylation of propionic acid over eight monometalic transition-metal catalyst surfaces (Ni, Pt, Pd, Ru, Rh, Re, Cu, Ag), we tested if nonlinear machine learning (ML) models can outperform the linear scaling relations in prediction accuracy when predicting the adsorption energy for various species on a metal surface based on data from the rest of the metal surfaces. We found linear scaling relations to hold well for predictions across metals with a mean-absolute error of 0.12 eV, and ML methods being unable to outperform linear scaling relations when the training dataset contains a complete set of energies for all of the species on various metal surfaces. Only when the training dataset is incomplete, namely, contains a random subset of species' energies for each metal, a currently unlikely scenario for catalyst screening, do kernel-based ML models significantly outperform linear scaling relations. We also found that simple coordinate-free species descriptors, such as bond counts, achieve as good results as sophisticated coordinate-based descriptors. Finally, we propose an approach for automatic discovery of appropriate metal descriptors using principal component analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
8秒前
吃彭彭的丁满完成签到,获得积分10
12秒前
糊了你的粥完成签到 ,获得积分10
13秒前
田様应助Hh采纳,获得20
18秒前
23秒前
一早发布了新的文献求助10
29秒前
cdercder发布了新的文献求助10
37秒前
量子星尘发布了新的文献求助10
37秒前
akun完成签到,获得积分10
40秒前
一早完成签到,获得积分10
41秒前
ktw完成签到,获得积分10
43秒前
星星完成签到,获得积分10
44秒前
沉默白桃完成签到 ,获得积分10
44秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
ding应助科研通管家采纳,获得10
50秒前
无聊科研应助科研通管家采纳,获得10
50秒前
酷波er应助科研通管家采纳,获得10
50秒前
50秒前
所所应助Nnaao采纳,获得10
52秒前
4114完成签到,获得积分10
54秒前
小笼包完成签到 ,获得积分10
1分钟前
隐形的谷槐完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
爱笑访文发布了新的文献求助10
1分钟前
星星发布了新的文献求助10
1分钟前
一路向北发布了新的文献求助20
1分钟前
hy完成签到,获得积分10
1分钟前
白白白完成签到,获得积分10
1分钟前
longer发布了新的文献求助10
1分钟前
你好好好完成签到,获得积分10
1分钟前
jojo完成签到 ,获得积分10
1分钟前
wzy5508完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
yar完成签到 ,获得积分10
1分钟前
充电宝应助wenfeisun采纳,获得10
1分钟前
小刘哥加油完成签到 ,获得积分10
1分钟前
无花果应助荔枝树13采纳,获得10
1分钟前
1分钟前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Astrochemistry 1000
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3875251
求助须知:如何正确求助?哪些是违规求助? 3417720
关于积分的说明 10704322
捐赠科研通 3142083
什么是DOI,文献DOI怎么找? 1733764
邀请新用户注册赠送积分活动 836134
科研通“疑难数据库(出版商)”最低求助积分说明 782483