磁流体力学
物理
磁流体驱动
规范(哲学)
压缩性
数学分析
数学
数学物理
量子力学
磁场
机械
法学
政治学
作者
Gaocheng Yue,Chengkui Zhong
摘要
The present paper is devoted to the well-posedness issue of solutions of a full system ofthe $3$-$D$ incompressible magnetohydrodynamic(MHD) equations. By means of Littlewood-Paley analysis we prove the global well-posedness of solutions in the Besov spaces $\dot{B}_{2,1}^\frac1{2}\times B_{2,1}^\frac3{2}\times B_{2,1}^\frac3{2}$ provided the norm of initial data is small enough in the sense that \begin{align*} \big(\|u_0^h\|_{\dot{B}_{2,1}^\frac1{2}}+\|E_0\|_{B_{2,1}^\frac{3}{2}}+\|B_0\|_{B_{2,1}^\frac{3}{2}}\big)\exp\Big\{\frac{C_0}{\nu^2}\|u_0^3\|_{\dot{B}_{2,1}^\frac1{2}}^2\Big\}\leq c_0, \end{align*} for some sufficiently small constant $c_0.$
科研通智能强力驱动
Strongly Powered by AbleSci AI