磁铁
导电体
超导磁体
电磁线圈
材料科学
悬浮
超导电性
磁场
凝聚态物理
工程物理
磁悬浮
高温超导
机械工程
核磁共振
核工程
电气工程
物理
复合材料
工程类
量子力学
作者
Hideaki Maeda,Yoshinori Yanagisawa
标识
DOI:10.1109/tasc.2013.2287707
摘要
The use of magnets made of high temperature superconductors (HTS) such as BSCCO and REBCO easily provide higher magnetic fields and higher operating temperatures, enabling dramatic improvements in superconducting magnet technology. The LTS magnet technology is very well summarized in text books written by M. N. Wilson (Superconducting magnets, Clarendon Press Oxford, 1983) and Y. Iwasa (Case studies in superconducting magnets, 2nd edition, Springer, 2009), covering such topics as stability, protection, ac loss and so forth. To the contrary, HTS conductors were commercialized only recently and therefore the magnet technology for HTS conductors remains undeveloped, especially so in the case of REBCO conductors. The technological problems for HTS coils thus far encountered are 1) an enormous effect of a screening current-induced magnetic field, 2) degradation in the coil performance due to excessive mechanical stresses applied along the longitudinal and transverse direction, and 3) the difficulty in protecting the magnet in the case of an abrupt thermal runaway. This paper reviews recent progress in overcoming these technological problems for HTS magnets. Both BSCCO and REBCO conductors have been used for HTS magnets in areas such as high field facilities, NMR, MRI, magnetic levitation trains and so forth. The effect of the screening current is the major problem for NMR, MRI, and accelerators, as it substantially distorts spatial field homogeneity and temporal field stability; on the other hand, degradation due to excessive stresses is substantial for high field magnets. Additionally, coil protection is a common and substantive problem among high current density HTS magnets in general. World-wide activities in developing BSCCO and REBCO magnets are overviewed in this paper.
科研通智能强力驱动
Strongly Powered by AbleSci AI