发光
纳米团簇
化学
荧光粉
分子内力
热致变色
金属
纳米技术
结晶学
光电子学
材料科学
立体化学
有机化学
作者
Zhennan Wu,Jiale Liu,Yang Gao,Huiwen Liu,Tingting Li,Haoyang Zou,Zhigang Wang,Kai Zhang,Yue Wang,Hao Zhang,Bai Yang
摘要
Metal nanoclusters (NCs) as a new class of phosphors have attracted a great deal of interest owing to their unique electronic structure and subsequently molecule-like optical properties. However, limited successes have been achieved in producing the NCs with excellent luminescent performance. In this paper, we demonstrate the significant luminescence intensity enhancement of 1-dodecanethiol (DT)-capped Cu NCs via self-assembly strategy. By forming compact and ordered assemblies, the original nonluminescent Cu NCs exhibit strong emission. The flexibility of self-assembly allows to further control the polymorphism of Cu NCs assemblies, and hence the emission properties. Comparative structural and optical analysis of the polymorphic NCs assemblies permits to establish a relationship between the compactness of assemblies and the emission. First, high compactness reinforces the cuprophilic Cu(I)···Cu(I) interaction of inter- and intra-NCs, and meanwhile, suppresses intramolecular vibration and rotation of the capping ligand of DT, thus enhancing the emission intensity of Cu NCs. Second, as to the emission energy that depends on the distance of Cu(I)···Cu(I), the improved compactness increases average Cu(I)···Cu(I) distance by inducing additional inter-NCs cuprophilic interaction, and therewith leads to the blue shift of NCs emission. Attributing to the assembly mediated structural polymorphism, the NCs assemblies exhibit distinct mechanochromic and thermochromic luminescent properties. Metal NCs-based white light-emitting diodes are further fabricated by employing the NCs assemblies with blue-green, yellow, and red emissions as phosphors.
科研通智能强力驱动
Strongly Powered by AbleSci AI