Deep Learning and Machine Learning for Early Detection of Stroke and Haemorrhage

人工智能 支持向量机 随机森林 计算机科学 机器学习 深度学习 决策树 模式识别(心理学) 条件随机场
作者
Zeyad Ghaleb Al-Mekhlafi,Ebrahim Mohammed Senan,Taha H. Rassem,Badiea Abdulkarem Mohammed,Nasrin M. Makbol,Adwan Alanazi,Tariq S. Almurayziq,Fuad A. Ghaleb
出处
期刊:Computers, materials & continua 卷期号:72 (1): 775-796 被引量:41
标识
DOI:10.32604/cmc.2022.024492
摘要

Stroke and cerebral haemorrhage are the second leading causes of death in the world after ischaemic heart disease. In this work, a dataset containing medical, physiological and environmental tests for stroke was used to evaluate the efficacy of machine learning, deep learning and a hybrid technique between deep learning and machine learning on the Magnetic Resonance Imaging (MRI) dataset for cerebral haemorrhage. In the first dataset (medical records), two features, namely, diabetes and obesity, were created on the basis of the values of the corresponding features. The t-Distributed Stochastic Neighbour Embedding algorithm was applied to represent the high-dimensional dataset in a low-dimensional data space. Meanwhile,the Recursive Feature Elimination algorithm (RFE) was applied to rank the features according to priority and their correlation to the target feature and to remove the unimportant features. The features are fed into the various classification algorithms, namely, Support Vector Machine (SVM), K Nearest Neighbours (KNN), Decision Tree, Random Forest, and Multilayer Perceptron. All algorithms achieved superior results. The Random Forest algorithm achieved the best performance amongst the algorithms; it reached an overall accuracy of 99%. This algorithm classified stroke cases with Precision, Recall and F1 score of 98%, 100% and 99%, respectively. In the second dataset, the MRI image dataset was evaluated by using the AlexNet model and AlexNet + SVM hybrid technique. The hybrid model AlexNet + SVM performed is better than the AlexNet model; it reached accuracy, sensitivity, specificity and Area Under the Curve (AUC) of 99.9%, 100%, 99.80% and 99.86%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
你怎么睡得着觉完成签到,获得积分10
3秒前
4秒前
Hong_Bin完成签到,获得积分10
4秒前
凉白开发布了新的文献求助10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
害怕的语柔完成签到,获得积分10
7秒前
淮山五加皮完成签到,获得积分10
8秒前
qpzn完成签到,获得积分10
8秒前
五六七发布了新的文献求助10
9秒前
赵怼怼发布了新的文献求助10
10秒前
11秒前
13秒前
SUWU完成签到,获得积分10
13秒前
Jenny完成签到,获得积分10
13秒前
哈神爱xuex发布了新的文献求助10
15秒前
脑洞疼应助晴天采纳,获得10
15秒前
丘比特应助高兴的幻柏采纳,获得10
16秒前
某某完成签到,获得积分10
17秒前
18秒前
Cyber_relic完成签到,获得积分10
22秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
做梦发布了新的文献求助10
25秒前
25秒前
26秒前
27秒前
27秒前
一站到底发布了新的文献求助10
27秒前
JG完成签到 ,获得积分10
28秒前
星星完成签到 ,获得积分10
29秒前
晴天发布了新的文献求助10
30秒前
董小贱发布了新的文献求助10
31秒前
薛定谔的猫完成签到,获得积分10
31秒前
32秒前
EasonYan发布了新的文献求助10
33秒前
量子星尘发布了新的文献求助10
34秒前
LM完成签到,获得积分10
35秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 666
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4245479
求助须知:如何正确求助?哪些是违规求助? 3778616
关于积分的说明 11863262
捐赠科研通 3432554
什么是DOI,文献DOI怎么找? 1883708
邀请新用户注册赠送积分活动 935361
科研通“疑难数据库(出版商)”最低求助积分说明 841850